CLASS : XIth
Solutions

## Topic :- KINETIC THEORY

1
(c)

For a given pressure, volume will be more if temperature is more [Charle's law]


From the graph it is clear that $V_{2}>V_{1} \Rightarrow T_{2}>T_{1}$
(d)
$C_{\text {rms }}=\sqrt{\frac{3 R T}{M}}$
Or $M=\frac{3 R T}{C_{\text {rms }}^{2}}=\frac{3 \times 8.31 \times 300}{(1920)^{2}}$
$=2 \times 10^{-3} \mathrm{~kg}=2 \mathrm{~g}$
Since, $M=2$ for the hydrogen molecule. Hence, the gas is hydrogen.
(d)
$v_{r m s}=\sqrt{\frac{3 P}{\rho}}=P \propto \rho\left[v_{r m s}\right.$ is constant for fixed temperature]
(c)

According to Boyle's law

$$
p_{1} V_{1}=p_{2} V_{2}
$$

As the pressure is decreased by $20 \%$, so

$$
\begin{aligned}
& p_{2}=\frac{80}{100} p_{1} \\
& p_{1} V_{1}=\frac{80}{100} p_{1} V_{2} \\
& V_{1}=\frac{80}{100} V_{2}
\end{aligned}
$$

Percentage increase in volume

$$
\begin{aligned}
& =\frac{V_{2-}-V_{1}}{V_{1}} \times 100 \\
& =\frac{100-80}{80} \times 100=25 \%
\end{aligned}
$$

(d)

Root mean square velocity,

$$
\begin{aligned}
c & =\sqrt{\frac{3 p V}{M}}=\sqrt{\frac{3 R T}{M}} \\
c_{1} & =\sqrt{\frac{3 R(T / 2)}{2 M}}=\frac{1}{2} \sqrt{\frac{3 R T}{M}} \\
& =\frac{c}{2}=\frac{300}{2}=150 \mathrm{~ms}^{-1}
\end{aligned}
$$

(c)

At $T K$, pressure of gas $(P)$ in the jar
= Total pressure - saturated vapour pressure
$\Rightarrow P=(830-30)=800 \mathrm{~mm}$ of Hg
New temperature $T^{\prime}=\left(T-\frac{T}{100}\right)=\frac{99 T}{100}$
Using Charle's law $\frac{P}{T}=\frac{P^{\prime}}{T^{\prime}} \Rightarrow P^{\prime}=\frac{P T^{\prime}}{T}$
$=\frac{800 \times 99 \mathrm{~T}}{100 \mathrm{~T}}=792 \mathrm{~mm}$ of Hg
Saturated vapour pressure at $T^{\prime}=25 \mathrm{~mm}$ of Hg
$\therefore$ Total pressure in the jar
$=$ Actual pressure of gas + Saturated vapour pressure
$=792+25=817 \mathrm{~mm}$ of Hg
(c)
$\mu_{1}=\frac{P V}{R T}, \mu_{2}=\frac{P V}{R T}$
$P^{\prime}=\frac{\left(\mu_{1}+\mu_{2}\right) R T}{V}=\frac{2 P V}{R T} \times \frac{R T}{V}=2 P$
(d)

Average kinetic energy $E=\frac{f}{2} k T$
Sinec $f$ and $T$ are same for both the gases so they will have equal energies also
(b)
$V_{r m s}=\sqrt{\frac{3 R T}{M}} \Rightarrow \frac{\left(V_{r m s}\right)_{O_{2}}}{\left(V_{r m s}\right)_{H_{2}}}=\sqrt{\frac{T_{O_{2}}}{T_{H_{2}}} \times \frac{M_{H_{2}}}{M_{O_{2}}}}$
$\Rightarrow \frac{\left(V_{r m s}\right)_{O_{2}}}{\left(V_{r m s}\right)_{H_{2}}}=\sqrt{\frac{900}{300} \times \frac{2}{32}}=\frac{\sqrt{3}}{4}$
$\Rightarrow\left(v_{r m s}\right)_{O_{2}}=836 \mathrm{~m} / \mathrm{s}$
(a)

As degree of freedom is defined as the number of independent variables required to define body's motion completely. Here $f=2$ (1 Translational +1 Rotational)
(b)
$\frac{E_{1}}{E_{2}}=\frac{A_{1}}{A_{2}} \cdot\left(\frac{T_{1}}{T_{2}}\right)^{4}=\frac{4 \pi r_{1}^{2}}{4 \pi r_{2}^{2}} \times 1=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
(c)
$V_{r m s}=\sqrt{\frac{3 P}{\rho}}$ or $P=\frac{\rho V_{r m s}^{2}}{3}$
$=\frac{8.99 \times 10^{-2} \times 1840 \times 1840}{3}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(b)

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} \quad \text { or } \quad v_{\mathrm{rms}} \propto \sqrt{T}
$$

$v_{\text {rms }}$ is to reduce two times, $i e$, the temperature of the gas will have to reduce force times or

$$
\frac{T^{\prime}}{T}=\frac{1}{4}
$$

During adiabatic process,

$$
T V^{\gamma-1}=T^{\prime} V^{\gamma-1}
$$

or $\quad \frac{V^{\prime}}{V}=\left(\frac{T}{T^{\prime}}\right)^{\frac{1}{y^{\prime-1}}}$

$$
=(4)^{\frac{1}{1.5-1}}=4^{2}=16
$$

$$
\therefore \quad V^{\prime}=16 V
$$

(a)
$(\Delta Q)_{V}=\mu C_{V} \Delta T \Rightarrow(\Delta Q)_{V}=1 \times C_{V} \times 1=C_{V}$
For monoatomic gas $C_{V}=\frac{3}{2} R$

$$
\therefore(\Delta Q)_{V}=\frac{3}{2} R
$$

(a)

Root mean square velocity

$$
v_{r m s} \propto \frac{1}{\sqrt{M}}
$$

So $\frac{\left(v_{r m s}\right)_{\mathrm{O}_{2}}}{\left(v_{r m s}\right)_{\mathrm{H} 2}}=\sqrt{\frac{M_{\mathrm{H} 2}}{M_{\mathrm{o}_{2}}}}$

$$
=\sqrt{\frac{2}{32}}=\frac{1}{4}
$$

At constant pressure $V \propto T \Rightarrow \frac{\Delta V}{V}=\frac{\Delta^{T}}{T}$
Hence ratio of increase in volume per degree rise in kelvin temperature to it's original volume $=\frac{(\Delta V / \Delta T)}{V}=\frac{1}{T}$
(c)
$\rho=\frac{P M}{R T}$
Density $\rho$ remains constant when $P / T$ or volume remains constant.
In graph (i) Pressure is increasing at constant temperature hence volume is decreasing so density is increasing. Graphs (ii) and (iii) volume is increasing hence, density is decreasing. Note that volume would had been constant in case the straight line the graph (iii) had passed through origin
(d)

According to Newton's law
$\frac{\theta_{1}-\theta_{2}}{t}=K\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
$\therefore \frac{60-50}{10}=K\left[\frac{60+50}{2}-25\right]$
Let $\theta$ be the temperature after another 10 min
$\therefore \frac{50-\theta}{10}=K\left[\frac{\theta+50}{2}-25\right]$
Dividing Eq.(i) by Eq. (ii), we get
$\frac{10}{50-\theta}=\frac{30 \times 2}{\theta} \quad \therefore \theta=42.85^{\circ} \mathrm{C}$
(c)
$\left(\frac{\Delta Q}{\Delta^{t}}\right)_{\text {inner }}+\left(\frac{\Delta Q}{\Delta^{t}}\right)_{\text {outer }}=\left(\frac{\Delta Q}{\Delta^{t}}\right)_{\text {total }}$
$\frac{K_{1} \pi r^{2}\left(T_{2}-T_{1}\right)}{l}+\frac{K_{2} \pi\left[(2 r)^{2}-r^{2}\right]\left(T_{2}-T_{1}\right)}{l}=\frac{K \pi(2 r)^{2}\left(T_{2}-T_{1}\right)}{l}$
or $\left(K_{1}+3 K_{2}\right) \frac{\pi r^{2}\left(T_{2}-T_{1}\right)}{l}=\frac{K \pi 4 r^{2}\left(T_{2}-T_{1}\right)}{l}$
$\therefore K=\frac{K_{1}+3 K_{2}}{4}$

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| A. | C | D | D | C | D | C | D | C | D | B |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
| A. | A | B | C | B | A | A | C | C | D | C |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

