CLASS : XIth
Solutions

Topic :- KINETIC THEORY

1

2
(b)
$\frac{E_{2}}{E_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{4}$
$=\left(\frac{273+84}{273+27}\right)^{4}=\left(\frac{357}{300}\right)^{4}=2.0$
(d)
$v_{r m s}=\sqrt{\frac{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}+v_{5}^{2}}{5}}=4.24$
(a)
$\therefore \quad \frac{R^{\prime}}{R}=\frac{(900)^{4}-(300)^{4}}{(600)^{4}-(300)^{4}}$
$=\frac{9^{4}-3^{4}}{6^{4}-3^{4}}=\frac{3^{4}\left(3^{4}-1\right)}{3^{4}\left(2^{4}-1\right)}$
$=\frac{80}{15}=\frac{16}{3}$
$R^{\prime}=\frac{16}{3} R$

(c)

Hence $\frac{U_{1}}{U_{2}}=\frac{1}{1}$

(a)

Rate of cooling proportional to ($T^{4}-T_{0}^{4}$), as per Stefan's Law.

The temperature rises by the same amount in the two cases and the internal energy of an ideal gas depends only on it's temperature

Kinetic energy for $m g$ gas $E=\frac{f}{2} m r T$
If only translational degree of freedom is considered
Then $f=3 \Rightarrow E_{\text {Trans }}=\frac{3}{2} m r T=\frac{3}{2} m\left(\frac{R}{M}\right) T$
$=\frac{3}{2} \times 20 \times \frac{8.3}{32} \times(273+47)=2490 J$
(c)

The number of moles of the system remains same,
$\frac{P_{1} V_{1}}{R T_{1}}+\frac{P_{2} V_{2}}{R T_{2}}=\frac{P\left(V_{1}+V_{2}\right)}{R T} \Rightarrow T=\frac{P\left(V_{1}+V_{2}\right) T_{1} T_{2}}{\left(P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}\right)}$
According to Boyle's law,
$P_{1} V_{1}+P_{2} V_{2}=P\left(V_{1}+V_{2}\right) \therefore T=\frac{\left(P_{1} V_{1}+P_{2} V_{2}\right) T_{1} T_{2}}{\left(P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}\right)}$
(b)

Saturated water vapour do not obey gas laws
(c)
$v_{r m s}=\sqrt{\frac{3 R T}{M}} \Rightarrow T \propto M \quad\left[\because v_{r m s}, R \rightarrow\right.$ constant $]$
$\Rightarrow \frac{T_{O_{2}}}{T_{N_{2}}}=\frac{M_{O_{2}}}{M_{N_{2}}} \Rightarrow \frac{T_{O_{2}}}{(273+0)}=\frac{32}{28} \Rightarrow T_{O_{2}}=312 \mathrm{~K}=39^{\circ} \mathrm{C}$

(c)

Boyle's and Charle's law follow kinetic theory of gases
(b)
$F=\frac{3}{2} k T \Rightarrow E \propto T$
(a)

In elastic collision kinetic energy is conserved
(c)

From the Mayer's formula

$$
\begin{equation*}
C_{p}-C_{V}=R \tag{i}
\end{equation*}
$$

and $\quad \gamma=\frac{C_{p}}{C_{V}}$
$\Rightarrow \quad \gamma C_{V}=C_{p}$
Substituting Eq. (ii) in Eq. (i) we get
$\Rightarrow \quad \gamma C_{V}-C_{V}=R$

$$
C_{V}(\gamma-1)=R
$$

$$
C_{V}=\frac{R}{\gamma-1}
$$

(b)

From Andrews curve
(a)

The rms velocity of an ideal gas is
$v_{r m s}=\sqrt{\frac{3 R T}{M}}$
Where T is the absolute temperature and M is the molar mass of an ideal gas Since M remains the same
$\therefore v_{r m s} \propto \sqrt{T}$
$\frac{v_{r m s}^{\prime}}{v_{r m s}}=\sqrt{\frac{T^{\prime}}{T}}=\sqrt{\frac{3 T}{T}}$
$\Rightarrow v^{\prime} r m s=\sqrt{3} v_{r m s}$
(c)

At constant temperature; $P V=$ constant
$\Rightarrow P \times\left(\frac{m}{D}\right)=$ constant
$\Rightarrow \frac{P}{D}=$ constant $=K .[D=$ Density $]$
(a)
$v_{r m s}=\sqrt{\frac{3 p}{\rho}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{\rho_{2}}{\rho_{1}}}=\sqrt{\frac{16}{1}}=\frac{4}{1}$
(a)

The gases carbon monoxide (CO) and nitrogen $\left(\mathrm{N}_{2}\right)$ are diatomic, so both have equal kinetic energy $\frac{5}{2} k T, i e . E_{1}=E_{2}$.

(a)

From ideal gas equation, we have

$$
\begin{aligned}
& & p V & =n R T \\
& \therefore & n & =\frac{p V}{R T}
\end{aligned}
$$

Given, $p=22.4 \mathrm{~atm}$ pressure

$$
\begin{aligned}
\quad & =22.4 \times 1.01 \times 10^{5} \mathrm{Nm}^{-2}, \\
V & =2 \mathrm{~L}=2 \times 10^{-3} \mathrm{~m}^{3}, \\
R & =8.31 \mathrm{~J} \mathrm{~mol}^{-1}-\mathrm{K}^{-1}, \\
T & =273 \mathrm{~K}
\end{aligned}
$$

$\therefore \quad n=\frac{22.4 \times 1.01 \times 10^{5} \times 2 \times 10^{-3}}{8.31 \times 273}$

$$
n=1.99 \approx 2
$$

Since, $\quad n=\frac{\text { Mass }}{\text { Atomic weight }}$
We have,
mass $=n \times$ atomic weight $=2 \times 14=28 \mathrm{~g}$
(d)

Average kinetic energy $E=\frac{3}{2} k T$
$\Rightarrow \quad E \propto T$
Thus, average kinetic energy of a gas molecule is directly proportional to the absolute temperature of gas.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	A	C	B	A	C	B	C	C	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	C	B	A	C	A	A	A	D			

