DPP

DAILY PRACTICE PROBLEMS

CLASS: XIIth

DATE:

SOLUTION

SUBJECT: CHEMISTRY

DPP NO.:9

Topic:-HYDROGEN

1 **(c)**

It resemble with alkali metals as it forms H⁺ion by losing its outer electron and resemble with halogen as it forms H⁻ion by gaining one electron.

2 **(a)**

Zinc, does not react with cold water.

$$Zn + H_2O \rightarrow ZnO + H_2O \uparrow$$

 $Steam$
 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2 \uparrow$
 $Zn + 2HCl (dil.) \rightarrow Zn Cl_2 + H_2 \uparrow$
 $Zn + H_2SO_4 (dil.) \rightarrow ZnSO_4 + H_2 \uparrow$

3 **(a)**

The H-O-H angle in water molecule is about 105° (due to two lone pairs of electrons)

4 (c)

Some transition metals such as Pt, Ni, Pd, Os, Cr, Mn, Fe, etc., adsorb relatively large amount of hydrogen gas, which is called occluded hydrogen.

5 **(d)**

Chlorine has lone pair which it can donate to form coordinate bond while hydrogen cannot

6 **(b**)

Metals in finely divided state possess larger surface area and are more reactive.

7 (d)

During the softening process the reaction takes place as:

$$Na_2Ze + Ca (HCO_3)_2 \rightarrow CaZe + 2NaHCO_3$$

$$Na_2Ze + Mg(HCO_3)_2 \rightarrow MgZe + 2NaHCO_3$$

After sometime, the zeolite is completely converted into calcium and magnesium zeolites. Eventually, the bed ceases to soften water *i.e.*, it gets exhausted. At this stage, the supply of hard

water is stopped and the exhausted zeolite is reclaimed by treating the bed with a 10% NaCl solution (Brine soln.) when the following reaction takes place

CaZe or Mgze + 2NaCl \rightarrow Na₂Ze + CaCl₂ or MgCl₂

Reclaimed zeolite

8 **(b)**

Volume strength $= 5.6 \times normality$

$$= 5.6 \times 1.5 = 8.4 L$$

9 **(a)**

Follow reactive nature of nascent hydrogen.

10 **(a)**

It is a fact.

11 **(d)**

These are characteristic properties of H_2O_2 .

12 **(a)**

HClO₄ does not give H₂O₂ on hydrolysis. Rest all contains O—O bond and gives H₂O₂ on heating.

13 **(d)**

 $_{1}\text{H}^{1}$ has no neutron, *i.e.*, n = 0, p = 1, $\frac{n}{p} = \frac{0}{1} = 0$

14 **(a**)

 $34 g H_2 O_2$ has 2 g H

$$\therefore 100 \text{ g H}_2\text{O}_2 \text{ has} \frac{2 \times 100}{34} = 5.88 \text{ g H}$$

15 **(a**)

Permutit or zeolite is the aluminosilicate of sodium. It is used to remove hardness of water. It converts insoluble salts of Ca^{2+} and Mg^{2+} into soluble zeolites. It exchange these ions with Na^{+} and water becomes soft.

Thus, exhausted permutit does not contain Na⁺ ions.

16 **(d)**

$$M_{\rm H_2O} = \frac{1000}{18 \times 1} = 55.6$$
17 **(d)**

$$0il_{\rm More} + H_2 \xrightarrow{\rm Margarine} ({\rm Ghee})$$

$$Unsaturated Saturated
18 (b)
$$2H_2O_2 \rightarrow 2H_2O + O_2$$$$

 $2 \times 34 \text{ g}$ 22400mL

∴ 68 g of H₂O₂ liberates 22400 mL O₂

$$\therefore 0.68 \text{ g of H}_2\text{O}_2 \text{ liberates} = \frac{0.68 \times 22400}{68}$$

$$= 224 \text{ mL O}_2$$

20 **(c)**

 $\rm H_2O_2$ reduces potassium ferricyanide (alk. Solution) $\rm K_3Fe(CN)_6$ to potassium ferrocyanide.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	A	A	С	D	В	D	В	A	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	A	D	A	A	D	D	В	D	С

