

CLASS: XIIth DATE:

SOLUTION

SUBJECT : CHEMISTRY

DPP NO.: 8

Topic:-HYDROGEN

1 (d)

10 volume = 1 volume of H_2O_2 gives 10 volume of O_2 at NTP.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

$$2(2 + 32) = 68 g$$
 22400 mL at NTP

At NTP

 \therefore 22400 mL of O_2 is obtained from

$$= 68 g H_2 O_2$$

 \therefore 10 mL of O_2 is obtained from

$$= \frac{68 \times 10}{22400} = 0.03035 \,\mathrm{g} \,\mathrm{H}_2\mathrm{O}_2$$

 $1 \text{ mL of } H_2O_2 \text{ solution contains}$

$$= 0.03035 \text{ g H}_2\text{O}_2$$

100 mL of H_2O_2 solution contains

$$= 0.03035 \times 100$$

$$= 3.035 \text{ g H}_2\text{O}_2$$

: Strength of 10 volume H₂O₂

$$= 3.035 \times 10$$

$$= 30.35 \text{ g/L}$$

Bond formation is exothermic.

Ortho-hydrogen is more stable and para form always try to convert in ortho form.

These are facts.

$$5e + Mn^{7+} \rightarrow Mn^{2+}$$

$$O_2^{1-} \longrightarrow O_2^0 + 2e$$

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$$

 $2H + CO \rightarrow HCHO$

It is a fact.

Hydrogen peroxide oxidise lead sulphide into lead sulphate which is a solid.

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$$

10 **(b)**

H₂O₂ has open book structure.

11 **(d)**

Na₂SO₃ is oxidised by H₂O₂ to Na₂SO₄

PbS is oxidised by H₂O₂ to PbSO₄

KI is oxidised by H_2O_2 to I_2

 O_3 cannot be oxidised by H_2O_2 but it is reduced to O_2 by H_2O_2

$$H_2O_2 + O_3 \rightarrow H_2O + 2O_2$$

12 **(b)**

It is one of the uses of H_2O_2 .

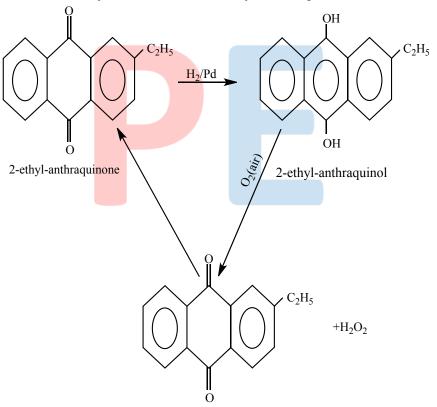
13 (c)

Industrial preparation of H_2O_2 :

(A) By the electrolysis of 50 % H₂SO₄: 50 % H₂SO₄ solution is electrolyzed at 0°C between Pt electodes. The perdisulphuric acid is formed.

$$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$$

 $2HSO_{4}^{-} \rightarrow H_{2}S_{2}O_{8} + 2e$ At Anode;


At Cathode; $2H^+ + 2e \rightarrow H_2$

The obtained perdisulphuric acid gives H_2O_2 on hydrolysis.

$$H_2S_2O_8 + 2H_2O \rightleftharpoons H_2O_2 + 2H_2SO_4$$

This H₂O₂ is separated by distillation at reduced pressure and thus, 30 % solution of H₂O₂ is obtained.

(B) By the auto-oxidation of 2-ethyl-anthraquinol (Modern method): Anthraquinol, in a mixture of benzene and *n*-heptanol on treatment with air gives H₂O₂ and 2-ethyl-anthraquinone. This 2-ethylanthraquinone on hydrogenation gives 2-ethyl-anthraquinol in presence of Pd catalyst. It is a cyclic process and in it only H₂ is consumed, 2-ethyl-anthraquinone is reobtained

during reaction.

2-ethyl-anthraquinone

15 **(b)**

30 mL O₂ is obtained by
$$\frac{34 \times 30}{11200}$$
 g H₂O₂/mL

$$\therefore M = \frac{34 \times 30 \times 100}{11200 \times 34} = 2.68 M$$

(d) 16

 $TiO_2 + H_2O_2 \longrightarrow H_2TiO_4$ (orange)

17 **(a)**

Tritium ($_1H^3$) is a heavy isotope of hydrogen which is obtained by nuclear reactions.

18 **(b)**

It is a fact.

19 **(a)**

 $H_2SO_4 + BaO_2 \rightarrow BaSO_4 + H_2O_2$

20 **(b)**

The formula of heavy water is D_2O .

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	A	A	A	D	A	В	A	С	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	В	A	D	В	D	A	В	A	В

