

CLASS: XIIth

DATE:

**SOLUTION** 

SUBJECT: CHEMISTRY

**DPP NO.: 8** 

**Topic:-HYDROCARBONS** 

#### 1 (a)

Aromatic compounds have delocalised  $\pi$ -electrons.

Out of given choices cyclohexane,  $CH_4$ ,  $C_2H_6$  and benzene, only benzene is aromatic compound.

Benzene has six delocalised  $\pi$ -electrons.

2 **(c)** 

Trivial name is allyl.

3 **(d)** 

These are all facts.

4 (a

The reactivity order for sulphonation of H-atom in alkane:

3°>2°>1°.

5 **(a)** 

As the -CH<sub>3</sub> group increases boiling point decrease

7 **(b**)

Alcoholic KOH is a dehydrohalogenating reagent, so when *n*-propyl bromide is treated with alcoholic KOH, propene is obtained.

 $CH_3CH_2CH_2Br + alc KOH$ 

*n*-propyl bromide

$$\rightarrow$$
CH<sub>3</sub>CH = CH<sub>2</sub> +HBr

propene

8 **(b)** 

Knowing the number and arrangement of carbon atoms in aldehydes and ketones the structure of the original alkene can be worked out.

$$CH_3$$
 $CH_2$ = $CH$ - $C$ = $CH$ - $CH_3$   $O_3$ 
 $Zn/CH_3COOH$ 

$$CH_3-C=O + O=C-H + CH_3COCHO$$

9 **(a** 

A method used during II world war.

10 **(d**)

Ozonolysis of these two produces different products.

12 **(c)** 

For simplest alkyne n=2; thus, alkyne is  $C_nH_{2n-2}$  or  $C_2H_2$ .

#### 14 (d)

Alkene is  $CH_3CH = CHCH_3$ , a symmetrical alkene and therefore alcohol is,

CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>3</sub> which will give alkene-2 as major product.

#### 15 **(b)**

Cyclodecapentaene and Cyclooctatetraene both are nonaromatic. Cyclobutadiene is antiaromatic while benzene having  $6\pi$ -electrons is aromatic

### 16 **(d)**

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>;

$$(CH3)2CHCH2CH2CH3;$$

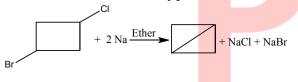
 $CH_3CH_2CH(CH_3)CH_2CH_3$ ;

 $(CH_3)_3CCH_2CH_3; (CH_3)_2CHCH(CH_3)_2$ 

#### 17 **(f)**

These are facts about alkanes.

#### 18 **(c)**


Due to resonance, benzene is quite stable and inspite of three double bonds does not decolourise B  $r_2$  water.

## 19 **(c)**

Follow peroxide effect.

# 20 **(d)**

The reaction is Wurtz's type reaction.



| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| A.         | A  | С  | D  | A  | A  | С  | В  | В  | A  | D  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A.         | В  | С  | С  | D  | В  | D  | D  | С  | С  | D  |
|            |    |    |    |    |    |    |    |    |    |    |

