

Cycloalkanes are isomeric with alkenes because they have same general formula C_nH_{2n} (*i.e.*, same molecular formula) but possessing different structures. They show ring chain isomerism.

is symmetrical alkane and will give only one monochloro substitution.

Rest all are used to convert>CO gp. to CH₂.

9 **(d)**

The presence of the chlorine atom on benzene ring makes the second substituent enter at *ortho* or *para* position because the chlorine atom is *ortho* - *para* directing.

10 (a)
Given, C =
$$\binom{12}{13}$$
 × 100%, H = $\binom{1}{13}$ × 100%
∴ C = 92.3% H = 7.69%

$$C = \frac{92.3}{12} = 7.69 = \frac{7.69}{7.69} = 1$$
$$H = \frac{7.69}{1} = 7.69 = \frac{7.69}{7.69} = 1$$

∴ Empirical formula of hydrocarbon is $C_1H_1 = CH$

∴ *A* has empirical formula CH and decolourises bromine water.

 \therefore It is alkyne which is C₂H₂.

- ∴ *B* has empirical formula CH and does not decolourise bromine water.
- \therefore It is benzene C₆H₆.

Due to acidic nature of the hydrogen atoms attached to a triple bond, acetylenes and terminal alkynes from metal acetylides

$$CH_3CH_2C \equiv CH + AgNO_3 + NH_4OH \rightarrow CH_3CH_2C \equiv CAg + NH_4NO_3 + H_2O$$

silver butynide

13 **(b)**

Cetane no. represent percentage of *n*-hexadecane in mixture.

14 **(c)**

```
Conjugated alkadienes show 1 : 2 and 1 : 4 addition.
```

Na/C₂H₅OH, LiAlH₄ or NaBH₄ are used for this purpose.

This is also a mean of preparing alkene where the position of the double bond is definite. In Wittig reaction, aldehyde (- CHO) and ketone (> C = O) react with methylene tryphenyl phosphine [(C₆H₅)₃P = CH₂] to give alkene.

 $CH_3CHO + (C_6H_5)_3P = CH_2$

$$\rightarrow CH_3 - CH = CH_2 + (C_6H_5)_3P = 0$$

oxide

$$H_{3C} \rightarrow C = O + (C_{6}H_{5})_{3}P = CH_{2} \rightarrow H_{3C} \rightarrow C = CH_{2} + (C_{6}H_{5})_{3}P = O$$

17 (c) $CH_{3}CH \xrightarrow{Br} + 4 Na + Br \xrightarrow{Br} CH \longrightarrow CH_{3}$ Ether $\Delta CH_{3} - CH = CH - CH_{3} + 4NaBr$ 2-butene 19 (d) Octane number is a measure of quality of fuel. 20 (d)

All possible products are obtained; C_2H_6 by CH_3COO^- ; C_4H_{10} by $CH_3CH_2COO^-$ and $CH_3CH_2CH_3$ by C H_3COO^- and $CH_3CH_2COO^-$.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	C	С	В	В	В	А	D	D	А
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	В	В	С	D	С	C	В	D	D

