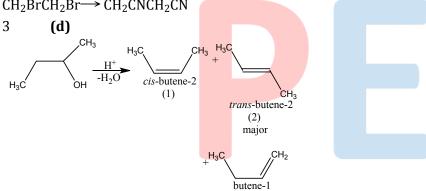


CLASS: XIIth DATE:

SOLUTION

SUBJECT: CHEMISTRY

DPP NO.:2


1 (a)
$$CH_2 \longrightarrow CH_2 \longrightarrow CH_2 \xrightarrow{\text{CH}_2 \text{ or 2 Na}} \bigvee + MgCl_2$$

$$CI \qquad CI$$

 α and $\omega\text{-dihalogen}$ derivative of an alkane on treatment with Mg or Zn or Na gives cycloalkane.

 $C_2H_5I \xrightarrow{KOH(alc.)} C_2H_4 \xrightarrow{Br_2} CH_2BrCH_2Br$

 $CH_2BrCH_2Br \xrightarrow{KCN} CH_2CNCH_2CN$

In [F] order of quantity of alkene 2 > 1 > 3

These on addition with Br_2/CCl_4 to give their addition products which have C_4H_6 Br_2 as molecular formula.

$$(4)BrH_2C - CH_2 - CHBr - CH_2$$

$$(5)CH_2Br - CH_2 - CH_2 - CH_2Br$$

$$CH_2OHCH_2OH \xrightarrow{HCl} CH_2ClCH_2Cl$$

Tertiary carbonium is most stable.

$$CH_2 = CH - CH = CH_2 + Br_2 \rightarrow$$

1,3-butadiene

(i)
$$CH_2 = CH - CH - CH_2$$

|
Br Br

3,4-dibromo butane

(ii)
$$CH_2 - CH = CH - CH_2$$

|
Br

Br

1,4-dibromo-2-butene

1,4-adduct is more stable than the 1,2-adduct.

10 **(d)**

Write chlorination reaction for all of them to find which gives of the maximum number of monochlorination product.

(a)
$$CH_3CH_2CH_2CH_3 + Cl_2$$

Cl
$$_{\rm ClCH_2-(CH_2)_3CH_3+CH_3-CH-(CH_2)_2}^{\rm Cl}$$
 $_{\rm ClCH_3+CH_3-CH_2-CH-CH_2-CH_3}^{\rm Cl}$

∴ Total 3 monochlorinated products are formed.

(b)
$$CH_3 - CH - CH_2 - CH_3 + Cl_2 \xrightarrow{UV}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{ClCH}_{2} - \text{CH} - \text{CH}_{2} - \text{CH}_{3} + \text{CH}_{3} - \text{C} - \text{CH}_{2} \\ | & | & | \\ \text{CH}_{3} & \text{CH}_{3} \\ - \text{CH}_{3} + \text{CH}_{3} - \text{CH} - \text{CH}_{2} - \text{CH}_{2} \text{Cl} \\ | & | \\ \text{CH}_{3} \end{array}$$

 \therefore Total 3 monochlorinated products are formed.

$$CH_3$$

: Total 3 monochlorinated products are formed.

$$CH_{3}$$

|
 $(d)CH_{3} - C - CH_{3} + Cl_{2} \xrightarrow{UV}$

|
 CH_{3}
 CH_{3}
 CH_{3}

|
 $CH_{3} - C - CH_{2}Cl$

|
 CH_{3}

∴ Only one monochlorinated products formed.

11 (a)

Cl

OH

$$|$$
 $CH_3 - C - CH_3 \xrightarrow{Hydrolysis} CH_3 - C - CH_3$
 $|$

Cl

OH

2,2-dichloro propane unstable

2,2-dichloro propane

$$-H_2O$$
 \rightarrow $CH_3 - C - CH_3$

0

acetone

$$CH_2 = CHCl + HCl \rightarrow CH_3 - CHCl_2$$

ethylidene chloride

1, 1 dichloroethane

$$\mu_{CCl_4}=0$$
 ; $\mu_{CHCl_3}=1.0$ D; $\mu_{CH_2Cl_2}=1.6$ D, $\mu_{CH_3Cl}=1.86$ D

134 (b)

$$0=C=0+C_2H_5OMgBr \rightarrow$$

O=C
$$C_2H_5$$
 C_2H_5 C_2H_5 OH C_2H_5

15 **(b**)

 $CH_3COOAg + CH_3Cl \rightarrow CH_3COOCH_3 + AgCl$

16 **(a**)

$$C_{3}H_{6}Cl_{2} - \underbrace{\begin{pmatrix} \text{KOH} \rightarrow C_{3}H_{6}O \\ (B) \end{pmatrix}}_{\text{KOH(alc.)}} C_{3}H_{4} \text{ Or}$$

$$\text{CH}_3\text{C} \!\!=\!\! \text{CH} \!\!\!\! \frac{\text{H}_2\text{O}}{\text{H}^+,\text{Hg}^{2+}} \!\!\!\! \text{CH}_3 \!\!\!\! \text{COCH}_3 \!\!\!\! \frac{\text{Br}2}{+\text{NaOH}} \!\!\!\! \text{CHBr}_3 \!\!\!\! + \text{CH}_3 \!\!\!\! \text{COONa}$$

Since, B and D are different thus, B is CH₃CH₂CHO and so A is CH₃CH₂CHCl₂.

18 **(a)**

Tertiary alcohols readily react with Lucas reagent ($ZnCl_2/conc$. HCl) to give white turbidity due to the formation of halide.

$$H_{3}C \xrightarrow{CH_{3}} OH \xrightarrow{ZnCl_{2}/HCl} H_{3}C \xrightarrow{CH_{3}} CH_{3}$$

$$20 \qquad \textbf{(a)}$$

Carbylamine test is a characteristic test of aliphatic and aromatic primary amines. In this test, amine is heated with chloroform and alcoholic potash when a bad smelling isocyanide (carbylamine) is formed.

$$RNH_2 + CHCl_3 + 3KOH (alc.)$$

$$RN = C + 3KCl + 3H_2O$$
alkyl isocyanide
(bad smelling)

in ether.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	D	С	D	A	D	A	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	D	A	В	В	A	В	A	С	A

