

CLASS: XIIth DATE:

SOLUTION

SUBJECT: CHEMISTRY

DPP NO.:1

Topic:-HALOALKANES AND HALOARENES

1 (a)

$$C_2H_5Cl + KCN \xrightarrow{C_2H_5OH} C_2H_5CN + KCl$$

(X)

$$C_2H_5CN \xrightarrow{H_3O^+,2H_2O} C_2H_5COOH + NH_3$$
(Y)or (C₃H₆O₂)

So, the molecular formula of the Y is $C_3H_6O_2$.

2 **(a)**

When ethyl bromide reacts wit<mark>h alco</mark>holic KCN, propane nitrile is obtained as main product.

 $C_2H_5Br + Alc. KCN \rightarrow C_2H_5CN$

propane nitrile

4 (d)

Carbylamine reaction is characteristic reaction for primary amine and chloroform.

5 **(a**)

$$4C_2H_5Br + 4Na - Pb \rightarrow (C_2H_5)_4Pb + 4NaBr$$

6 **(d)**

Its monochloro derivatives are follows

(i)
$$ClCH_2$$
- $\overset{*}{C}H$ - CH_2 - CH_3
 CH_3

or
$$CH_3$$
— $\overset{*}{C}H$ — CH_2 — CH_3

$$CH_2CI$$

It will exist as enantiomers pair d and l-forms

(ii)
$$CH_3$$
— C — CH_2 — CH_3
 CH_3

no asymmetric C atom

$$\begin{array}{c} \text{Cl} \\ | \\ \text{(iii) } CH_3-CH-CH-CH_3 \\ | \\ CH_3 \end{array}$$

It will exist as enantiomeric pair (*d*-and *l*- forms)

(iv)
$$CH_3$$
— CH — CH_2 — CH_2 — CH_2 — CH_3

No asymmetric carbon atom

Hence, only two enantiomeric pairs will be obtained by the monochlorination of 2-methylbutane.

$$RX + \underset{(\text{Ether})}{\text{Ag}_2}0 \longrightarrow R \cdot 0 \cdot R + 2\underset{}{\text{Ag}}X$$

3 **(a)**

Williamson's synthesis

$$C_2H_5ONa + ClC_2H_5 \rightarrow C_2H_5OC_2H_5 + NaCl$$

diethyl ether

$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2(Hydrolysis)$$

$$Cl_2 + C_2H_5OH \rightarrow CH_3CHO (Oxidation)$$

$$CH_3CHO + Cl_2 \rightarrow CCl_3CHO$$
 (Substitution)

$$CCl_3CHO + Ca(OH)_2 \rightarrow CHCl_3 + (HCOO)_2Ca (Hydrolysis)$$

 $\label{lodoform} \ \ \text{lodoform test} \ \ \text{is given by the compounds containing either}$

CH₃CO — roup or CH₃CHOH group.

The structures of the given compounds are as

- 1. CH₃CH₂CH₂CH₂OH
- 2. $CH_3COC_6H_5$
- 3. CH_3CHO
- 4. $CH_3COC_2H_5$

 \therefore *n* butyl alcohol does not give iodoform test because it does not possess the

ı

 $CH_3CO - or CH_3CHOH$ group.

11 **(c)**

It is not a colouring material.

13 **(b**)

Alkyl halides are less soluble in water. They are polar but fail to form H-bonds with water.

14 **(b**)

Hexachloroethane is also called artificial camphor. Its structure is

 $(CH_3)_2CHCH_2MgBr + HOC_2H_5 \xrightarrow{Ether}$

$$(CH_3)_2CHCH_3+Mg$$
OC₂H
Br

17 **(b)**

Dipole moment of CH_3Cl is more than CH_3F due to larger C-X bond. Also electronegativity of Br being less than F and Cl and thus inspite of larger C-X bond dipole moment of CH_3Br is lowest.

19 **(a)**

$$CH_3 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{Alc.KOH} CH_3 - CH_2 - CH = CH_2 + HCI$$

1-chlorobutane

butene-1

20 **(a)**

$$2CHCl_3 + 6Ag^{-\Delta} CH \equiv CH + 6AgCl$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	A	A	D	A	D	D	A	С	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	A	В	В	D	D	В	В	A	A

