CLASS : XIth
Solutions

Topic :- GRAVITATION

(b)
(i)Gravitational force on the particle placed at mid point D of side $B C$ of length a is

$\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}$
Here, $\quad \overrightarrow{\mathbf{F}}_{2}=-\overrightarrow{\mathbf{F}}_{3}$
$\therefore \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+0=\overrightarrow{\mathbf{F}}_{1}$
or $\quad F=F_{1}=\frac{G M M}{[A D]^{2}}=\frac{G M^{2}}{\left(3 a^{2} / 4\right)}=\frac{4 G M^{2}}{3 a^{2}}$
(ii)gravitational force on the particle placed at the point O, ie the intersection of three medians is
$\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{1}+\overrightarrow{\mathbf{F}}_{2}+\overrightarrow{\mathbf{F}}_{3}=\overrightarrow{\mathbf{0}}$ or $\mathrm{F}=0$

Since, the resultant of $\overrightarrow{\mathbf{F}}_{2}$ and $\overrightarrow{\mathbf{F}}_{3}$ is equal and opposite to $\overrightarrow{\mathbf{F}}_{1}$
(b)

If g is the acceleration due to gravity of earth at the position of satellite, the apparent weight of a body in the satellite will be
$W_{\text {app }}=m\left(\mathrm{~g}^{\prime}-a\right)$
But as satellite is a freely falling body, $i e, \mathrm{~g}^{\prime}=a$
So, $W_{\text {app }}=0$
$\frac{K_{A}}{K_{B}}=\frac{r_{B}}{r_{A}}=\left(\frac{R+\mathrm{h}_{B}}{R+\mathrm{h}_{A}}\right)=\left(\frac{R+2 R}{R+R}\right)=\frac{3}{2}$
(b)

As mass, $M=\frac{4}{3} \pi R^{2} \rho$
or $\rho=\frac{3 M}{4 \pi R^{3}}$
$\therefore \frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{s}}}=\frac{M_{s}}{M_{e}} \times \frac{R_{e}^{3}}{R_{s}^{3}}=330 \times\left(\frac{1}{100}\right)^{3}=3.3 \times 10^{-4}$
(c)
$U=\frac{-G M m}{r}, K=\frac{G M m}{2 r}$ and $E=\frac{-G M m}{2 r}$
For a satellite U, K and E varies with r and also U and E remains negative whereas K remain always positive
(a)
$\mathrm{g}^{\prime}=\mathrm{g}-\frac{10 \mathrm{~g}}{100}-\frac{90}{100} \mathrm{~g}$
$\mathrm{g}^{\prime}=\mathrm{g} \frac{R^{2}}{(R+h)^{2}}$ or $\frac{9}{10}=\frac{R^{2}}{(R+h)^{2}}$
or $\frac{3}{\sqrt{10}}=\frac{R}{R+h}$
or $\mathrm{h}=(\sqrt{10}-3) R / 3$
$\frac{(\sqrt{10}-3) \times 6400}{3}=345.60 \mathrm{~km}$
7 (d)
The minimum velocity of projection to achieve escape velocity can be calculated as

$$
\begin{aligned}
\text { Intial KE } & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} \times m(4 \times 11.2)^{2}=16 \times \frac{1}{2} m v_{\mathrm{e}}^{2}
\end{aligned}
$$

As $\frac{1}{2} m v_{\mathrm{e}}^{2}$ energy is used up in coming out from the gravitational pull of the earth, so final KE should be $15 \times \frac{1}{2} m v_{e}^{2}$
Hence, $\quad \frac{1}{2} m v_{\mathrm{e}}^{2}=15 \times \frac{1}{2} m v_{e}^{2}$
$\therefore \quad v^{\prime 2}=15 v_{e}^{2}$
or $\quad v^{\prime}=\sqrt{15} v_{e}$ $=\sqrt{15} \times 11.2 \mathrm{kms}^{-1}$
(c)
$\frac{T_{\text {mercury }}}{T_{\text {earth }}}=\left(\frac{r_{\text {mercury }}}{r_{\text {earth }}}\right)^{3 / 2}=\left(\frac{6 \times 10^{10}}{1.5 \times 10^{11}}\right)^{3 / 2}=\frac{1}{4}$
(approx.)
$\therefore T_{\text {mercury }}=\frac{1}{4}$ year
(c)
$\frac{\mathrm{g}_{m}}{\mathrm{~g}_{e}}=\frac{M_{m}}{M_{e}} \times\left(\frac{R_{e}}{R_{m}}\right)=\frac{1}{81} \times(4)^{2}=\frac{16}{81}$
$\mathrm{g}_{m}=\frac{16}{81} \mathrm{~g}_{e}$
$\therefore v_{e}=\sqrt{2 \mathrm{~g}_{e} R_{e}}=\sqrt{2 \times 9.8 \times(6400 \times 1000)}$
$\approx 11.2 \mathrm{kms}^{-1}$
$v_{m}=\sqrt{2 \mathrm{~g}_{m} R_{m}}=\sqrt{2 \times \frac{16}{81} \mathrm{~g}_{e} \times \frac{1}{4} R_{e}}$
$=\frac{2}{9} \sqrt{2 \mathrm{~g}_{e} R_{e}}=\frac{2}{9} \times 11 \approx 2.5 \mathrm{kms}^{-1}$

(a)

Acceleration due to gravity is given by

$$
g=\frac{G M}{R^{2}}
$$

where G is gravitational constant.
For earth: $g_{\mathrm{e}}=\frac{G M_{\mathrm{e}}}{R_{e}^{2}}$
For planet: $g_{p}=\frac{G M_{p}}{R_{p}^{2}}$
Therefore, $\frac{g_{e}}{g_{p}}=\frac{G M_{e} / R_{e}^{2}}{G M_{p} / R_{p}^{2}}$
or $\quad \frac{g_{e}}{g_{p}}=\frac{M_{e}}{M_{p}} \times \frac{R_{p}^{2}}{R_{e}^{2}}$
Given, $M_{p}=2 M_{e}, R_{p}=2 R_{e}$
Putting the values in the Eq. (i), we obtain

$$
\begin{aligned}
& \frac{g_{e}}{g_{p}} \\
&=\frac{M_{e}}{2 M_{e}} \times \frac{\left(2 R_{e}\right)^{2}}{R_{e}^{2}}=\frac{1}{2} \times \frac{4}{1}=2 \\
& \therefore \quad g_{p}
\end{aligned}=\frac{g_{e}}{2} .
$$

(c)
$v_{e}=\sqrt{\frac{2 G M}{R}}$ i.e. escape velocity depends upon the mass and radius of the planet
(b)

When the spaceship is to take off, gravitational pull of earth requires more energy to be spent to overcome it
(d)

Acceleration due to gravity on earth is given by $g=\frac{G M}{R^{2}}$

$$
\left(\text { Here, } M_{m}=\frac{M_{e}}{9}, R_{m}=\frac{R_{e}}{2}\right)
$$

Hence, $\quad \frac{g_{e}}{g_{m}}=\frac{M_{e}}{M_{m}} \times \frac{R_{m}^{2}}{R_{e}^{2}}=\frac{9 M_{e}}{M_{e}} \times\left(\frac{R_{e}}{2 R_{e}}\right)^{2}$
or $\quad \frac{g_{e}}{g_{m}}=\frac{9}{4}$
So, $\quad \frac{g_{m}}{g_{e}}=\frac{4}{9}$
\because Weight of body on moon

$$
\begin{aligned}
& =\text { weight of body on earth } \times g_{m} / g_{e} \\
& =90 \times \frac{4}{9}=90 \times \frac{4}{9}=40 \mathrm{~kg}
\end{aligned}
$$

(b)
$\omega_{\text {body }}=27 \omega_{\text {earth }}$
$T^{2} \propto r^{3} \Rightarrow \omega^{2} \propto \frac{1}{r^{3}} \Rightarrow \omega \propto \frac{1}{r^{3 / 2}} \quad \therefore r \propto \frac{1}{\omega^{2 / 3}}$
$\Rightarrow \frac{r_{\text {body }}}{r_{\text {earth }}}=\left(\frac{\omega_{\text {earth }}}{\omega_{\text {body }}}\right)^{2 / 3}=\left(\frac{1}{27}\right)^{2 / 3}=\frac{1}{9}$
(d)
$L=m v r=m\left(\sqrt{\frac{G M}{r}}\right) r=m \sqrt{G M r} \therefore L \propto \sqrt{r}$
(c)
$H=\frac{u^{2}}{2 g} \Rightarrow H \propto \frac{1}{g} \Rightarrow \frac{H_{B}}{H_{A}}=\frac{g_{A}}{g_{B}}$
Now $g_{B}=\frac{g_{A}}{12}$ as $g \propto \rho R$
$\therefore \frac{H_{B}}{H_{A}}=\frac{g_{A}}{g_{B}}=12$
$\Rightarrow H_{B}=12 \times H_{A}=12 \times 1.5=18 \mathrm{~m}$
(b)
$T^{2} \propto r^{3}$
(c)

Force acting on a body of mass M at a point at depth d. Inside the earth is
$F=m g^{\prime}=m \mathrm{~g}\left(1-\frac{d}{R}\right)$
$=\frac{m G M}{R^{2}}\left(\frac{R_{-} d}{R}\right)=\frac{G M m}{R^{3}} r(\because R-d=r)$
So, $F \propto r$; Given $F \propto r^{n}$
$n=1$
(d)

Let the gravitational force on a body mass m at O due to moon of mass M and earth of mass $8 / M$ be zero, where $E O=x$ and $M O=(r-x)$. Then,
$\frac{G 81 M \times m}{x^{2}}=\frac{G M m}{(r-x)^{2}}$
or $\frac{81}{x^{2}}=\frac{1}{(r-x)^{2}}$
or $\frac{9}{x}=\frac{1}{(r-x)}$
On solving; $x=9 r / 10$
(b)

Gravitational force on a body at a distance x from the centre of earth $F=\frac{G M m}{x^{2}}$
Work done,
$W=\int_{R}^{R+h} F d x=\int_{R}^{R+h} \frac{G M m}{x^{2}} d x$
$=G M m\left[-\frac{1}{x}\right]_{R}^{R+h}=m g R^{2}\left[\frac{1}{R}-\frac{1}{R+h}\right]$
This work done appears as increase in potential energy
$\Delta E_{p}=m g R^{2}\left[\frac{1}{R}-\frac{1}{R+h}\right]$
$=m \mathrm{~g}(5 h)^{2}\left[\frac{1}{5 h}-\frac{1}{6 h}\right]=\frac{5}{6} m \mathrm{gh}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	B	B	D	B	C	A	D	C	C	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	B	D	B	D	C	B	C	D	B

