CLASS : XIth
DATE :

Solutions

Topic:- LAWS OF MOTION

1
(b)

For A :
$5 \mathrm{~g}-\mathrm{T}=5(2 C)$
For $C: 2 T-8 \mathrm{~g}=8 C \Rightarrow C=\frac{8}{14}=\frac{5}{7} \mathrm{~ms}^{-2}$
(b)

1. Acceleration of block A downwards w.r.t. ground

2. Acceleration of block B w.r.t. inclined plane
3. Acceleration of block C w.r.t. ground right side. $\vec{b}+\vec{c}$ acceleration of B w.r.t. ground

Applying Newton's law on system along horizontal direction, we have
$m c+m(c-b \cos \theta)=0$
Applying Newton's law on $(A+B)$ along the inclined plane,
$2 m \mathrm{~g} \sin \theta=m(b-c \cos \theta)+m a \sin \theta$
$2 \mathrm{~g} \sin \theta=b-c \cos \theta+a \sin \theta$
From wedge constraint between A and B,
$a=b \sin \theta$
From Eq. (i), (ii) and (iii), $b=\frac{4 \mathrm{~g} \sin \theta}{1+3 \sin ^{2} \theta}$
(a)

For chain to move with constant speed, P needs to be equal to frictional force on the chain.
As the length of chain on the rough surface increases. Hence, the friction force $f_{k}=\pi_{k} N$ increases
(d)

Let at any time, their velocities are v_{1} and v_{2}, respectively, then $v_{1}=v_{2} \cos \theta$
Differentiating: $a_{1}=a_{2} \cos \theta-v_{2} \sin \theta \frac{d \theta}{d t}$
Hence, none of them is correct
[Note: Option (a) is correct initially, because initially $v_{2}=0$]
(c)

Let the plank move up by x, then pulley 2 will move down by x. Let the end of $\operatorname{string} C$ moves down by a distance y

Let the initial length of string passing over pulley $2 l_{1}+l_{2}$ (i)
After displacement x and y mentioned above, the lengths becomes
$\left(\mathrm{l}_{1}-2 x\right)+\left(\mathrm{l}_{2}+y-x\right) \quad$ (ii)
Equating (i) and (ii), we get $y=3 x$
Length of string that slips through A is $y+x=4 x$
Length of string that slip[s through A is $y+x=4 x$ and the through B is $y=3 x$
Required ratio $\frac{4 x}{3 x}=\frac{4}{3}$
(b)

Horizontal acceleration of the system is
$a=\frac{F}{2 m+m+2 m}=\frac{F}{2 m}$

Let N be the normal reaction between B and C. Free-body diagram of C gives
$N=2 m a=\frac{2}{5} F$
Now B will nor slide downwards if $\mu N \geq m_{B}$ g
Or $\mu\left(\frac{2}{5} F\right) \geq m g$ or $F \geq \frac{5}{2 \mu} m g$
Or $F_{\text {min }}=\frac{5}{2 \mu} m g$

7
(b)
$t_{A}=\sqrt{\frac{2 s}{a_{A}}} \Rightarrow t_{D}=\sqrt{\frac{2 s}{a_{D}}}, t_{A}=\frac{1}{2} t_{D}$
$\sqrt{\frac{2 s}{\mathrm{~g} \sin \theta+\mu \mathrm{g} \cos \theta}}=\frac{1}{2} \sqrt{\frac{2 s}{\mathrm{~g} \sin \theta-\mu \mathrm{g} \cos \theta}}$
$4 \mathrm{~g} \sin \theta-4 \mu \mathrm{~g} \cos \theta=\mathrm{g} \sin \theta+\mu \mathrm{g} \cos \theta$
$3 \mathrm{~g} \sin \theta=5 \mu \mathrm{~g} \cos \theta$ or $\mu=\frac{3}{5} \tan \theta=\frac{3}{5}$
$\left(\because \theta=45^{\circ}\right)$

8
(c)
$N_{1}=m g \cos \theta$ and $f_{1}=\mu m g \cos \theta$

$N_{2}=M g \cos \theta$ and $f_{2}=\mu M g \cos \theta$

Equation of motion are
$T-f_{1}=m g \sin \theta=m a \quad$ (i)
$M g \sin \theta-T-f_{2}=M a$ (ii)
Solving Eqs. (i) and (ii), we get $T=0$
(a)
$2 T-(M+m) \mathrm{g}=(M+m) a$
$T-m g+N=m a \quad$ (ii)

From (i) and (ii), we get
$N=\left(\frac{m-M}{2}\right)(\mathrm{g}+a)>0$
As $m>M$, if T increase, a increase and if a increase N increases
(d)

Using constraint theory

$\mathrm{l}_{1}+2 \mathrm{l}_{2}+\mathrm{l}_{3}=$ constant
$\Rightarrow v_{1}+2 v_{2}+v_{3}=0$
Take downward as positive and upward as -ve
So $+12+2(-4)+v_{3}=0$
$v_{3}=$ velocity of pulley $P=-4 \mathrm{~ms}^{-1}$
$=4 \mathrm{~ms}^{-1} \mathrm{In}$ upward direction
$\vec{v}_{A P}=-\vec{v}_{B P} \Rightarrow V_{A P}=-\left(v_{B}-v_{P}\right)$
$v_{B}=v_{P}-v_{A P}=-4-(3)=-7 \mathrm{~ms}^{-1}$
i.e., block B is moving up with speed $7 \mathrm{~ms}^{-1}$
(d)
$\vec{v}_{B, 1}=4 \mathrm{~ms}^{-1} \uparrow, \vec{V}_{B, 1}=\vec{V}_{B}, \mathrm{~g}-\vec{V}_{\mathrm{l}}, \mathrm{g}$
$\Rightarrow 4 \mathrm{~ms}^{-1}=\vec{V}_{B g},-2 \mathrm{~ms}^{-1} ; \vec{V}_{B g}=6 \mathrm{~ms}^{-1} \uparrow$
(b)

Choosing the positive $x-y$ axis as shown in the figure, the momentum of the bead at A is \vec{p}_{i}
$=+m \vec{v}$. The momentum of the bead at B is $\vec{p}_{f}=-m \vec{v}$

Therefore, the magnitude of the change in momentum
Between A and B is $\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}=-2 m \vec{v}$
i.e., $\Delta p=2 m v$ along the positive x-axis
the time taken by the bead to reach from A to B is
$\Delta t=\frac{\pi d / 2}{v}=\frac{\pi d}{2 v}$
Therefore, the average force exerted by the bead on the wire is
$F_{\mathrm{av}}=\frac{\Delta p}{\Delta p}=\left(2 m v / \frac{\pi d}{2 v}\right)=\frac{4 m v^{2}}{\pi d}$
(d)

The acceleration of block-rope system is $a=\frac{F}{(M+m)}$
Where M is the mass of block and m is the mass of rope
So the tension in the middle of the rope will be
$T=\{M+(m / 2)\} a=\frac{M+(m / 2) F}{M+m}$
Given that $m=M / 2$

$$
\therefore T=\left[\frac{M+(M / 4)}{M+(M / 2)}\right] F=\frac{5 F}{6}
$$

(a)

Free body diagram (FBD) of the block (shown by a dot) is shown in figure.

For vertical equilibrium of the block,
$N=m g+F \sin 60 \circ=\sqrt{3} g+\sqrt{3} \frac{F}{2}$
For no motion, force of friction
$f \geq F \cos 60$ 。
or ${ }^{\circ} \mu N \geq F \cos 60$ 。
or $\frac{1}{2 \sqrt{3}}\left(\sqrt{3} g+\frac{\sqrt{3} F}{2}\right) \geq \frac{F}{2}$
or $g \geq \frac{F}{2}$ or $F \leq 2 g$ or 20 N
Therefore, maximum value of F is 20 N .
$F=m g \sin \theta-m g \cos \theta$
During upward motion:
$2 F=m g \sin \theta+\mu m g \cos \theta$
Solving above two equations, we get $m=(\tan \theta) / 3$
(b)

In figure, the point B is in equilibrium under the action of T, F and Mg щщциииை

Here $T \sin \theta-F$ or $T=F / \sin \theta$
(c)
$a_{1}=\frac{F_{-} f}{m_{1}}=\frac{F_{-} \mu m_{1} \mathrm{~g}}{m_{1}}=10 \mathrm{~ms}^{-2}$
$a_{2}=\frac{F-\mu m_{2} \mathrm{~g}}{m_{2}}=1 \mathrm{~ms}^{-2}$
$\therefore s=\frac{1}{2} a_{\text {real }} t^{2}=\frac{1}{2}[10+1] t^{2} \Rightarrow t=2 \mathrm{~s}$
(c)

Due to acceleration in forward direction, vessel is in an accelerated frame therefore a Pseudo force will be exerted in backward direction. Therefore water will be displaced in backward direction
(a)
$x=0$, till $m g \sin \theta<\mu m g \cos \theta$ and gradually x will increase. At angle $\theta>\tan ^{-1}(\mu)$
$k x+\mu m g \cos \theta=m g \sin \theta$
or $x=\frac{m \mathrm{~g} \sin \theta-\mu m \mathrm{~g} \cos \theta}{k}$
Here k is the force constant of spring

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	B	A	D	C	B	B	C	A	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	D	B	D	A	A	A	B	C	C	A	

