CLASS: XIth
DATE :

Solutions

SUBJECT : PHYSICS
DPP No. : 7

Topic :- LAWS OF MOTION

(d)

From constraint relations we can see that the acceleration of block B in upward direction is
$a_{B}=\left(\frac{a_{C}+a_{A}}{2}\right)$ with proper sings
So $a_{B}=\left(\frac{3-12 t}{2}\right)=1.5-6 t$
or $\frac{d v_{B}}{d t}=1.5-6 t$ or $\int_{0}^{v_{B}} d v_{B}=\int_{0}^{1}(1.5-6 t) d t$
or $v_{B}=1.5 t-3 t^{2}$ or $v_{B}=0$ at $t=1 / 2 \mathrm{~s}$
(b)

Retardation of train $=20 / 4=5 \mathrm{~ms}^{-2}$
It acts in the backward direction. Fictious force on suitcase $=5 \mathrm{~m}$ Newton, wherer m is the mass of suitcase. In act6s in the forward direction. Due to this force, the suitcase has a tendency to slide forward. If suitcase is not to slide, then $5 m=$ Newton, where m is the mass of suitcase. In acts in the forward direction. Due to this force, the suitcase has a tendency to slide forward. If suitcase is not to slide, then $5 m=$ force f of friction or $5 m=m \mathrm{mg}$ or $m=\frac{5}{10}=0.5$
(a)

When
$P=m g(\sin \theta-\mu \cos \theta)$
$f=\mu m g \cos \theta$ (upwards)
when $P=m g \sin \theta$
$f=0$
and when $P=m g(\sin \theta+\mu \cos \theta)$
$f=\mu m g \cos \theta$ (downwards)
Hence, friction is first positive, then zero and then negative.
(b)

As the springs have natural length initially, if one spring is compressed, the other must be expanded. Hence, the compression will be negative
The free-body diagram of m_{2} [figure]

$$
T+F_{2}=80 \mathrm{~N} \text { and } F_{2}=70 \times 0.5=35 \mathrm{~N}
$$

$\therefore T=80-35=45 \mathrm{~N}$

FBD of m_{1} (figure)
$T+F_{1}=m_{1} g$ or $F_{1}=-25 \mathrm{~N}$
$\therefore \quad X_{1}=\frac{-25}{k_{1}}=\frac{-25}{50}=-0.5 \mathrm{~m}$
Therefore, compression in first spring is -0.5 m (negative sing indicates that it is extension)
(b)

Figure, $F_{c}=\sqrt{f^{2}+N^{2}}=m(\mathrm{~g}+a)$

$f=m(\mathrm{~g}+a) \sin \theta, N=m(\mathrm{~g}+a) \cos \theta$
Net contact force: $F_{C}=\sqrt{f^{2}+N^{2}}=m(\mathrm{~g}+a)$
(a)

The string is under tension, Hence there is limiting friction between the block and the plane figure

$\sum F_{x}=0$
$\Rightarrow \mu N+50 \cos 45^{\circ}=150 \sin 45^{\circ}$
$\sum F_{y}=0$
$\Rightarrow N=50 \sin 45^{\circ}+150 \cos 45^{\circ}$
Solving (i) and (ii), we get $m=1 / 2$
(b)

$\tan \beta=\frac{12}{5} \quad \therefore \cos \beta=\frac{5}{13}$
$T_{1} \cos \beta+T_{2} \cos \beta=m \mathrm{~g} \quad$ (i)
$T_{1} \sin \beta=T_{2} \sin \beta$
$\therefore T_{1}=T_{2}=T$
$\therefore 2 T \cos \beta=m g \Rightarrow T=\frac{m g}{2 \cos \beta} \Rightarrow T=\frac{13}{10} m g$
(d)

Let v_{1} be the velocity of block and v_{2} be the velocity of end A of the string, w.r.t. man

$\frac{d \ell_{5}}{d t}=v_{2}=2 \mathrm{~ms}^{-1} \quad$ (given),,$\frac{d \ell_{1}}{d t}=\frac{d \ell_{2}}{d t}=-v_{1}$
Now $\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}+\ell_{5}=$ constant
$\Rightarrow \frac{d \ell_{1}}{d t}+\frac{d \ell_{2}}{d t}+0+0+\frac{d l s}{d t}=0$
$\Rightarrow-v_{1}-v_{1}+v_{2}=0 \Rightarrow v_{1}=\frac{v_{2}}{2}=\frac{2}{2}=1 \mathrm{~ms}^{-1}$
(b)

Limiting friction $F_{1}=\mu_{s} R=0.5 \times(5)=2.5 \mathrm{~N}$

Since downward force is less than limiting friction therefore block is at rest so the static force of friction will work on it
$F_{s}=$ downward force $=$ Weight
$=0.1 \times 9.8=0.98 \mathrm{~N}$
(c)

In the free-body diagram of m [figure (a)],
$T=m \mathrm{~g}$
[No friction will act between M and m

In the free-body diagram of M (figure (b))
$f=\mu_{2} N=3 T$
and $T+M g=N$
From Eq. (iii), $N=(m+M)$ g
From Eq. (ii), $\mu_{2}(m+M) \mathrm{g}=3 \mathrm{mg}$
$m=\frac{\mu_{2} M}{\left(3-\mu_{2}\right)}=\frac{1 / 3 \times 8}{(3-1 / 3)}=1 \mathrm{~kg}$
(a)

The FBD of the block is as shown in the figure

$N=80 \cos 37^{\circ}=64 \mathrm{~N}$
So, $f_{L}=0.2 \times 64=32 \mathrm{~N}$
As $4 \mathrm{~g}<80 \sin 37^{\circ}$, friction force will act downwards. Net applied force in upward direction (excluding friction force) is
$80 \sin 37^{\circ}-40=48-40=8 \mathrm{~N}$
As $F_{\text {applied }}$ in vertical direction is less than f_{L}, block won't move in vertical direction and value of static friction force is $f=8 \mathrm{~N}$
(b)

As in the figure, mass of the rope: $m=4 \times 1.5=6 \mathrm{~kg}$
Acceleration: $a=12 / 6=2 \mathrm{~ms}^{-2}$

Mass of part 1 as in the figure $7.567 m_{1}=1.6 \times 1.5=2.4 \mathrm{~kg}$

$T=m_{1} a=2.4 \times 2=4.87 \mathrm{~N}$
(d)
$\vec{a}=\frac{\vec{F}}{m}=-10 \hat{j}\left(\mathrm{~ms}^{-1}\right)^{2}$
Displacement in y-direction
$y=u t+\frac{1}{2} a t^{2} \Rightarrow 0=4 \times t \times-\frac{1}{2} \times 10 \times t^{2}$
$t=\frac{4}{5} s \Rightarrow x=4 t=4 \times \frac{4}{5}=3.2 \mathrm{~m}$

(a)

$f_{l}=m M g$. If motion does not start, then $f=F=F_{0} t$
Motion will start when $f=f_{1}$

$\Rightarrow F_{0} T=\mu M g \Rightarrow T=\frac{\mu M g}{F_{0}}$

(c)

The free-body diagrams of two blocks are shown in figure. Under the assumption that blocks are moving together,
$F+2 \mathrm{~g} \sin 37^{\circ}+3 \mathrm{~g} \sin 37^{\circ}-f_{1}-f_{2}=5 a$
Where $f_{1}=\mu \times 3 \operatorname{gcos} 37^{\circ}$
And $f_{2}=\mu \times 2 \mathrm{gcos} 37^{\circ}$

$\Rightarrow a=\frac{46}{5} \mathrm{~ms}^{-2}$
For 3 kg block, $N+3 \mathrm{~g} \sin 37^{\circ}-f_{1}=3 a \Rightarrow N=12 \mathrm{~N}$
(d)

As the block does not slip on prism, the combined acceleration of the prism is $a=\operatorname{gsin} \theta$

$m g \sin \theta$ is the pseudo force on m $N+m g \sin \theta+\sin \theta=m g$ or $N=m g \cos ^{2} \theta$
And for no slipping, $m g \sin \theta \cos \theta \geq \mu N$
$m g \sin \theta \cos \theta \leq \mu m g \cos ^{2} \theta$ or $\mu \geq \tan \theta$
(c)

From figure $L=2 h-2 y+\sqrt{x^{2}+h^{2}}$
Differentiating the equation, we get
$\frac{d y}{d y}=\frac{x}{2 \sqrt{\mathrm{~h}^{2}+x^{2}}} \frac{d}{d t} \Rightarrow V_{B}=\frac{x V_{A}}{2 \sqrt{\mathrm{~h}^{2}+x^{2}}}$

20
(a)
$a=\frac{\sqrt{R_{1}^{2}+R_{2}^{2}}}{m}=\frac{R_{3}}{m} \quad\left[\therefore \quad R_{3}=\sqrt{R_{1}^{2}+R_{2}^{2}}\right]$

ANSWER-KEY														
Q.	1	2	3	4	5	6	7	8	9	10				
A.	D	B	A	C	B	A	B	A	B	D				
Q.	11	12	13	14	15	16	17	18	19	20				
A.	B	C	A	B	D	A	C	D	C	A				

