CLASS: XIth
Solutions
SUBJECT : PHYSICS
DATE:
DPP No. : 3

Topic :- LAWS OF MOTION

(d)

Due to malfunctioning of engine, the process of rocket fusion stops and hence net force experienced by spacecraft becomes zero. Afterwards the spacecraft continues to move with constant speed
(b)

Here y is constant $\frac{d \ell}{d t}=v_{B}$

$\ell^{2}=y^{2}+x^{2} \Rightarrow 2 \ell \frac{d \ell}{d t}=2 x \frac{d x}{d t}$
$\Rightarrow v_{B}=\frac{x}{\ell} v_{A}=v_{A} \cos 60^{\circ}=1 \mathrm{~ms}^{-1}$

(a)

Acceleration of the skaters will be in the ratio
$\frac{F}{4}: \frac{F}{5}$ or $5: 4$
Now according to the problem, $s=0+\frac{1}{2} a t^{2}$
We get $\frac{s_{1}}{s_{2}}=\frac{a_{1}}{a_{2}}=\frac{5}{4}$
(b)

If the wedge moves leftwards by x, then the block moves down the wedge by $4 x$, i.e. w.r.t. wedge the block comes sown by $4 x$

So, acceleration of block w.r.t. wedge $=4 a$ along the incline plane of wedge
Acceleration of wedge with respect to ground $=a$, alonm gleft. So acceleration of block
w.r..t ground is the vector sum of two vectors shown in the figure. That is

$$
\begin{aligned}
& \left|\vec{a}_{B G}\right|=\sqrt{a^{2}+(4 a)^{2}+2 \times a \times 4 a \times \cos (\pi-\alpha)} \\
& =(\sqrt{17-8 \cos \alpha}) a \mathrm{~ms}^{-2}
\end{aligned}
$$

(b)
$\vec{a}_{b, \ell}=\vec{a}_{b}-\vec{a}_{\ell}=(\mathrm{g}-a) \downarrow \Rightarrow \vec{a}_{b}=\mathrm{g} \downarrow$
(c)

Let the weight of each block be W (figure)

So, $N_{1}=N_{2}=\frac{N_{3}}{2}$
(c)

Equation of motion for A (figure)
$k x=m a \Rightarrow a=\frac{k x}{m}$
For $B: F-T=m a^{\prime}$
$\Rightarrow a^{\prime}=\frac{F-k x}{m}$
\Rightarrow The relative acceleration $=a_{r}=\left|a^{\prime}-a\right|=\frac{F-2 k x}{m}$

(d)

As there is no tendency of relative slipping between the block and cube, the friction force is zero
(d)

From 0 to T, area is positive and from T to $2 T$, area is negative. Net area is zero. Hence no change in momentum occurs
(c)

Acceleration is to be downward which is possible in option (c)
(c)

Area under the force - time graph is impulse, and impulse is change in momentum
Area of graph=change in momentum
$\Rightarrow \frac{1}{2} T F_{0}=2 m u \Rightarrow F_{0}=\frac{4 m u}{T}$
(a)

$N=m g \cos \theta, f=m g \sin \theta$
Net force applied by M on m (or m on M):
$F=\sqrt{N^{2}+f^{2}}$
$=\sqrt{(m g \cos \theta)^{2}+(m g \sin \theta)^{2}}=m g$
(a)
$V_{A}=2 \mathrm{~ms}^{-1}$ (towards right)
$\therefore \quad V_{P_{1}}=\frac{V_{A}}{2}=1 \mathrm{~ms}^{-1} \quad$ (upwards)
$V_{A}=2 \mathrm{~ms}^{-1}$ (towards left)

Now $2 V_{P_{2}}=V_{B}+V_{P_{1}} \therefore V_{P_{2}}=\frac{V_{B}+V_{P_{1}}}{2}=\frac{2+1}{2}=1.5 \mathrm{~ms}^{-1}$
(d)

Maximum friction that can be obtained between A and B is $f_{1}=\mu m_{A} g=(0.3)(100)$
(10) $=300 \mathrm{~N}$ and maximum

Friction between B and ground is
$f_{2}=\mu\left(m_{A}+m_{B}\right) \mathrm{g}=(0.3)(100+140)(10)=720 \mathrm{~N}$
Drawing free-body diagrams of A, B and C in limiting case

Equilibrium of A gives
$T_{1}=f_{1}=300 \mathrm{~N}$
Equilibrium of B gives
$2 T_{1}+f_{1}+f_{2}=T_{2}$
or $T_{2}=2(300)+300+720=1620 \mathrm{~N}$
and equilibrium of C gives $m_{C} \mathrm{~g}=T_{2}$
or $10 m_{C}=1620$ or $m_{C}=162 \mathrm{~kg}$
(c)

$T \cos 60^{\circ}=30 \mathrm{~N} \Rightarrow T=60 \mathrm{~N}$
$T \sin 60^{\circ}=T_{2}=W \Rightarrow W=60 \frac{\sqrt{3}}{2}=30 \sqrt{3} \mathrm{~N}$

20
(a)

On the system of particle if,
$\sum \mathbf{F}_{\mathrm{ext}}=0$
then $\mathbf{P}_{\text {system }}=$ constant
No other conclusions can be drawn.

ANSWER-KEY														
Q.	1	2	3	4	5	6	7	8	9	10				
A.	D	B	A	B	D	A	B	B	B	C				
Q.	11	12	13	14	15	16	17	18	19	20				
A.	C	D	D	C	C	A	A	D	C	A				

