CLASS : XIth
DATE :

Solutions

Topic :- LAWS OF MOTION

1
(b,c)

$F=10 a_{1}+40 a_{2}$
$\Rightarrow 100=10 a_{1}+40 \times 2 \Rightarrow a_{1} 2 \mathrm{~ms}^{-2}$

So acceleration of A must be $2 \mathrm{~ms}^{-2}$ for given conditions to be satisfied
$f \leq f_{\ell} \Rightarrow 20 \leq \mu m_{A} \mathrm{~g}$
$\Rightarrow 20 \leq \mu \times 10 \mathrm{~g} \Rightarrow \mu \geq 0.2$
Hence, m can be greater or equal to 0.2

(a,b,c)

Here $m_{1} g \sin 30^{\circ}=m_{2} \mathrm{~g}=20 \mathrm{~N}$, so there is no tendency of motion in any direction
Hence there is no friction on m_{1}. Contact force will be only normal force

(a,b,c)

1. Let acceleration of each block be a
$10 g-T_{2}=10 a, \quad T_{2}-T_{1}-f=3 a$
$T_{1}-f=2 a$, where $f=0.3 \times 2 \mathrm{~g}=6 \mathrm{~N}$
From above equations
$10 g-2 f=15 a \Rightarrow 10 \times 10-2 \times 6=15 a$
$\Rightarrow a=88 / 15 \mathrm{~ms}^{-2}$
$T_{2}=10 g-10 a=10 \times 10-10 \times \frac{88}{15}=41.3 \mathrm{~N}$
$T_{1}=f+2 a=6+2 \times \frac{88}{15}=17.7 \mathrm{~N}$
Clearly $T_{2}>T_{1}$
2. This is correct because of greater mass of 3 kg since acceleration is same for both
3. This is incorrect, because net force acting on 10 kg mass is greater due to its larger mass, not due to its acceleration downward
(a,d)

$T_{2} \cos 60^{\circ}=T_{1} \cos 30^{\circ} \quad$ (i)
And $T_{2} \sin 60^{\circ}+T_{1} \sin 30^{\circ}=5 \mathrm{~g}$
From (i) and (ii)
$T_{1}=25 \mathrm{~N}$ and $T_{2}=25 \sqrt{3} \mathrm{~N}$
(b,c)
Force of upthrust will be there on mass m shown in figure, so A weighs less than 2 kg .
Balance will show sum of load of beaker and reaction of upthrust so it is reads nore than 5 kg
(b,c)
Here $F>\mu, m g\left(1+\frac{m}{M}\right)$, so slipping will occur between the blocks
Fro $m F-\mu_{k} m g=m . a \Rightarrow a=1.2 \mathrm{~ms}^{-2}$
For $M \mu_{k} m g=M A \Rightarrow A=0.4 \mathrm{~ms}^{-2}$
(a,d)
If initially acceleration of A is greater than that of B, then there will be extension and if that of B is greater than A, then there will be compression in the spring. Otherwise length of spring will remain same

(a,b,c,d)

When friction between the blocks becomes zero, the relative sliding between the block will be stopped hence; $v_{A}=v_{B}$ and $a_{A}=a_{B}$. Also when the friction becomes zero, only forces to move the blocks are F_{A} and F_{B}
$a_{A}=a_{B} \Rightarrow \frac{F_{A}}{m_{A}}=\frac{F_{B}}{m_{B}}$
(a,c)
$M \mathrm{~g}-\mathrm{T}=\mathrm{Ma}$ (i)
$T=m a \quad$ (ii)

Solving (i) and (ii), $a=\frac{M \mathrm{~g}}{M+m}$
FBD of man
$M \mathrm{~g}-N=M a \Rightarrow N=\frac{M m g}{(M+m)}$

(a)

At A the horizontal speeds of both the masses is the same. The velocity of Q remains the same in horizontal as no force is acting on the horizontal direction. But in case of P as shown at any intermediate position, the horizontal velocity first increases (due to $N \sin \theta$), reaches a maximum value at O and then decreases. Thus it always remains greater than v, Therfore, $t_{P}<t_{Q}$

(c)
$a=\frac{F}{m}=\frac{5 \times 10^{4}}{3 \times 10^{7}}=\frac{5}{3} \times 10^{-3} \mathrm{~ms}^{-2}$
$v=\sqrt{2 a s}=\sqrt{2 \times \frac{5}{3} \times 10^{-3} \times 3}=0.1 \mathrm{~ms}^{-1}$
(b,d)
Option (a) is wrong since Earth is an accelerated frame and hence cannot be an inertial
frame
Option (b) is correct
Option (c) is incorrect; strictly speaking as Earth is accelerated reference frame (earth is treated as a reference frame for practical examples and Newton's law's are applicable to it only as a limiting case)
Option (d) is correct

(a,b,d)

Newton's second law is $\vec{F}=\frac{d \vec{p}}{d t^{\prime}}$, which itself explains the validity of the given statements
(d)

Rate of flow water $\frac{v}{t}=10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
$=10 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Density of water $\rho=\frac{10^{3} \mathrm{~kg}}{\mathrm{~m}^{3}}$
Cross-sectional area of pipe $A=\pi\left(0.5 \times 10^{-3}\right)^{2}$
Force $=m \frac{d v}{d t}=\frac{m v}{t}=\frac{V \rho v}{t}=\frac{\rho v}{t} \times \frac{v}{A t}$
$=\left(\frac{v}{t}\right)^{2} \frac{l}{A} \quad\left(\therefore v=\frac{v}{A t}\right)$
$F=\frac{\left(10 \times 10^{-6}\right)^{2} \times 10^{3}}{\pi \times\left(0.5 \times 10^{-3}\right)^{2}}$
$=0.127 \mathrm{~N}$
(a)

Since, $\mu m g \cos \theta>m g \sin \theta$
Force of friction is $f=m g \sin \theta$

(b,c,d)

For some time, the block won't move due to friction force. When $F>f_{L}$, the motion of block starts

$a=\frac{F-f_{k}}{m}=\frac{k t-f_{k}}{m} \Rightarrow \frac{d v}{d t}=a=\frac{k t-f_{k}}{m}$
$v=\frac{\frac{k t^{2}}{2}-f_{k} t}{m} \Rightarrow \frac{d s}{d t}=\frac{\frac{k t^{2}}{2}-f_{k} t}{m} \Rightarrow s=\frac{\frac{k t^{3}}{6}-\frac{f_{k} t^{2}}{2}}{m}$
(b)
$F=m \frac{d v}{d t}=0.05 \times \frac{100}{0.02}=250 \mathrm{~N}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	C	A	B	C	C	A	B	C	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	A	A	C	B	A	D	A	B	B			

