CLASS: XIth
Solutions
SUBJECT : PHYSICS
DATE:

Topic :- LAWS OF MOTION

1
(d)

Speed $v=\sqrt{v_{x}^{2}+v_{y}^{2}}$
Rate of change of speed
$\frac{d v}{d t}=\frac{2 v_{x} \frac{d v_{x}}{d t}+2 v_{y} \frac{d v_{y}}{d t}}{2 \sqrt{v_{x}^{2}+v_{y}^{2}}}$
$=\frac{v_{x} a_{x}+v_{y} a_{y}}{\sqrt{v_{x}^{2}+v_{y}^{2}}}$

2

3

4
(d)

Force $\mathbf{F}=\frac{\mathbf{d p}}{d t}=-k A \sin (k t) \hat{\mathbf{i}}-k A \cos (k t) \hat{\mathbf{j}}$
$\mathbf{p}=A \cos (k t) \hat{\mathbf{i}}-A \sin (k t) \hat{\mathbf{j}}$
Since, $\quad \mathbf{F} \cdot \mathbf{p}=0$
\therefore Angle between \mathbf{F} and \mathbf{p} should be 90°
(c)

Given $\left(V=10 \mathrm{~ms}^{-1}\right)$
After 2s: $V_{x}=\frac{V}{\sqrt{2}}-\frac{\mathrm{g}}{\sqrt{2}} \times 2 \Rightarrow V_{x}=\frac{10}{\sqrt{2}}-\frac{10}{\sqrt{2}} \times 2$
$V_{x}=-\frac{10}{\sqrt{2}} \mathrm{~ms}^{-1}$ and $V_{y}=-\frac{10}{\sqrt{2}} \mathrm{~ms}^{-1}$
$V=\sqrt{\frac{100}{2}+\frac{100}{2}}=10 \sqrt{\frac{1}{2}+\frac{1}{2}}=10 \mathrm{~ms}^{-1}$
(b)

Frictional force $=\mu R=\mu(m g+Q \cos \theta)$ and horizontal push $=P-Q \sin \theta$
For equilibrium, we have
$\mu(m \mathrm{~g}+Q \cos \theta)=P-Q \sin \theta \Rightarrow \mu=\frac{P-Q \sin \theta}{m \mathrm{~g}+Q \cos \theta}$
(c)

At any instant, velocity of two wedges would be of same magnitude but it opposite directions. This can be concluded from conservation of momentum or by symmetry
From constraint theory, $v_{M}=\frac{4}{3} v_{m}$
From energy conservation,
$\frac{M v_{M}^{2}}{2} \times 2+\frac{m v_{m}^{2}}{2}-0=m \mathrm{gh} \Rightarrow v_{M}=\sqrt{\frac{32 m \mathrm{gh}}{32 M+9 m}}$
So the velocity with which wedges recede away form each other is
$2 v_{M}=\sqrt{\frac{32 m \mathrm{gh} \times 4}{32 M+9 m}}$
(c)

By virtual work method:
Acceleration of B w.r.t. A will be $10 \mathrm{~ms}^{-2}$ downward. Apart from this, B also has an acceleration $5 \mathrm{~ms}^{-1}$ in horizontal direction along with A, so net acceleration of B is $\sqrt{10^{2}+5^{2}}=\sqrt{100+25}=\sqrt{125}=5 \sqrt{5} \mathrm{~ms}^{-2}$
(c)
$T=2 m a$

$m \mathrm{~g}-\mathrm{T}=\mathrm{ma}$
$a=\mathrm{g} / 3$
(c)

The minimum force required to just move a body will be $f_{1}=\mu_{s} m g$. After the motion is started, the friction will becomes kinetic. So the force which is responsible for the increase in velocity of the block is
$F=\left(\mu_{s}-\mu_{k}\right) m g=(0.8-0.6) \times 4 \times 10=8 \mathrm{~N}$
So, $a=\frac{F}{m}=\frac{8}{4}=2 \mathrm{~ms}^{-2}$
(d)

Free-body diagram (figure)

Equations of motion:
$a_{B}=\frac{F}{M}$ (in $+x$ direction $)$
$a_{A}=\frac{F}{m}$ (in $-x$ direction)
Relative acceleration of A w.r.t. B :
$\vec{a}_{A . B}=\vec{a}_{A}-\vec{a}_{B}=-\frac{F}{m}-\frac{F}{M}=-F\left(\frac{m+M}{m M}\right)$
(along - x direction)
Initial relative velocity of A w.r.t. B
$u_{A . B}=v_{0}$
Final relative velocity of A w.r.t. $B=0$
Using $v^{2}=u^{2}+2 a s$
$0=v_{0}^{2}-2 \frac{F(m+M)}{m M} S \Rightarrow S=\frac{M m v_{0}^{2}}{2 F(m+M)}$
(b)

Angular frequency of the system,
$\omega=\sqrt{\frac{k}{m+m}}=\sqrt{\frac{k}{2 m}}$
Maximum acceleration of the system will be, $\omega^{2} A$ or $\frac{k A}{2 m}$. This acceleration to the lower block is provided by friction.
Hence, $f_{\text {max }}=m a_{\text {max }}$
$=m \omega^{2} A=m\left(\frac{k A}{2 m}\right)=\frac{k A}{2}$
(c)

Here friction force would be responsible to cause the acceleration of truck., here maximum friction force can be $f=\mu \times<\frac{M \mathrm{~g}}{2}$ where $M \rightarrow$ mass of entire truck
This is the net force acting on tyre, so $M a=\frac{\mu M g}{2}$
$\Rightarrow a=\frac{0.6 \times 10}{2}=3 \mathrm{~ms}^{-2}$

Minimum effort is required by pulling a block at the angle of friction
(b)
$K=10^{2} \mathrm{~N} \mathrm{~cm}^{-1}=10^{4} \mathrm{Nm}^{-1}$. Let the ball move distance x away from the centre as shown in figure

$k x=m w^{2}(0.1+x)$
$\Rightarrow 10^{4} x=\frac{90}{1000} \times\left(10^{2}\right)^{2} \times(0.1+x)$
Solve to get $x \approx 10^{-2} \mathrm{~m}$
(c)

Distance travelled in $t^{\text {th }}$ second is,
$s_{t}=u+a t-\frac{1}{2} a$
Given, $u=0$
$\therefore \quad \frac{s_{n}}{s_{n}+1}=\frac{a n-\frac{1}{2} a}{a(n+1)-\frac{1}{2} a}=\frac{2 n-1}{2 n+1 x}$
(c)

From figure,
$2 F+N-M g=M a$
$2 F-m \mathrm{~g}-N=m a$
$4 F-(M+m) \mathrm{g}=(M+m) a$
$a=\frac{4 F-(M+m) \mathrm{g}}{M+m}$
(d)

From constraint, the acceleration of both block and wedge should be same in a direction perpendicular to the inclined plane as shown in figure

$$
\begin{aligned}
& \text { (and } a_{A X} \\
& a_{A X} \cos 53 \circ-a_{A Y} \cos 37 \circ=a_{B} \cos 53 \circ \\
& \text { or } a_{B}=-5 \mathrm{~ms}^{-1} \text { or } a_{B}=-5 \hat{i}
\end{aligned}
$$

(a)

Let \vec{a}_{0} be the acceleration of choosen non-inertial frame of reference w.r.t some inertial frame of reference and \vec{a}_{1} be the acceleration of the object in non-inertial frame

For \vec{a}_{1} to be non-zero, the net force acting on object (including pseudo force) must be nonzero
(a)

From length constraint $\mathrm{l}_{1}+\mathrm{l}_{2}+\mathrm{l}_{3}+\mathrm{l}_{4}=C$
$l_{1}^{\prime \prime}+l_{2}^{\prime \prime}+l_{3}^{\prime \prime}+l_{4}^{\prime \prime}=0$
$(-a-b)+0+(-a-b)+c=0$
$c=2 a+2 b$
From wedge constraints, acceleration of C is right side is a. Acceleration of C w.r.t. ground $=a \hat{i}-2(a+b) \hat{j}$
(b)

FBD of m in frame of wedge

$N=m g \cos \alpha-m a \sin \alpha$
Now $f=\mu N=m a \cos \alpha+m g \sin \alpha$

$$
\begin{aligned}
& \mu=\frac{a \cos \alpha+\mathrm{g} \sin \alpha}{\mathrm{~g} \cos \alpha-a \sin \alpha} \\
& \mu=\frac{a+\mathrm{g} \tan \alpha}{\mathrm{~g}-a \tan \alpha}=\frac{5}{12}
\end{aligned}
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	D	C	B	C	C	C	C	D	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	A	A	B	C	C	D	A	A	B	

