CLASS : XIth

Topic :- LAWS OF MOTION

(c)

For equilibrium in vertical direction for body B we have

$\sqrt{2} m g=2 T \cos \theta=2(m g) \cos \theta$
$T=m g$ (at equilibrium)
$\therefore \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}$
(a)

The two forces acting on the insect are $m g$ and N. Let us resolve $m g$ into two components:
$m g \cos \alpha$ balances N
$m g \sin \alpha$ is balanced by the frictional force

$N=m g \cos \alpha$
$f=m g \sin \alpha$
But $f=\mu N=\mu m g \cos \alpha$
$\Rightarrow \cot \alpha=\frac{1}{\mu} \Rightarrow \cot \alpha=3 \backslash$
(a,b,c,d)
a

$F-m \mathrm{~g}=m a$
$F=m(\mathrm{~g}+a)=4 m \mathrm{~g}=4 \mathrm{~W}$
b Think of Newton's third law of motion

c $m \mathrm{~g}<f_{\text {max }}$
or $m \mathrm{~g}<\mu_{s} R$ or $m \mathrm{~g}<\mu_{s} m a$
or $\mathrm{g}<\mu_{s} a$ or $\mu_{s} a>\mathrm{g}$ or $\mu_{s}>\frac{\mathrm{g}}{a}$
d The jumping away of the man involved upward acceleration. It means an upward force acts on man during jumping. Then from third law, a downward force acts on platform due to which reading first increases

($\mathbf{a}, \mathbf{c}, \mathbf{d}$)

In first case, m will remain at rest. $a_{M}=F / M$
In second case, both will accelerate
$a_{m}=a_{M}=F /(M+m)$
In second case, force on $m=m a_{m}=m F /(M+m)$
(a,b,c)
Friction on A and B acts as shown

From the figure it is clear that friction on A supports it motion and on B opposes its motion. And friction always opposes relative motion

(a,b,c)

For (i); Consider a block at rest on a rough surface and no force (horizontal) is acting on it. Now friction force on it would be zero. For (ii): Consider a heavy block, under the application of small force F which is not sufficient to cause its motion, so friction force is static in nature and block doesn't move

For (iii): Refer to concepts and formulae
For (iv): Friction force and normal force always act perpendicular to each other
(a,c)
In region $A B$ and $C D$, slope of the graph is constant i.e. velocity is constant. It means no force acting on the particle in this region
(d)

Force on the pulley are
$F=\sqrt{F_{1}^{2}+F_{2}^{2}}$
$=\left(\sqrt{(m+M)^{2}+M^{2}}\right) \mathrm{g}$
$F_{2}=T=M g \overbrace{F_{1}=(m+M) g}^{\gtrless}$
(c)

FBD of bob is $T \sin \theta=\frac{m v^{2}}{R}$
and $T \cos \theta=m \mathrm{~g}$
$\tan \theta=\frac{v^{2}}{R g}=\frac{(10)^{2}}{(10)(10)}$
$\tan \theta=1$
or $\theta=45^{\circ}$
(a,c)

Balancing forces perpendicular to incline $N_{1}=m g \cos 37^{\circ}+m a \sin 37^{\circ}$
$N_{1}=\frac{4}{5} m g+\frac{3}{5} m a$
And along incline, $m g \sin 37^{\circ}-m a \cos 37^{\circ}=m b_{1}$
$b_{1}=\frac{3}{5} g-\frac{4}{5} a$

Similarly for this case get $n_{2}=\frac{4}{5} M G-\frac{3}{5} M A$
And $b_{2}=\frac{3}{5} \mathrm{~g}+\frac{4}{5} a$

Similarly for this case get $N_{3}=\frac{4}{5} m g+\frac{4}{5} m a$
$b_{3}=\frac{3}{5} g+\frac{3}{5} a$

Similarly for this case, get $N_{4}=\frac{4}{5} m g-\frac{4}{5} m a$
And $b_{4}=\frac{3}{5} g-\frac{3}{5} a$
(a,b,c)
If the block is at rest, then force applied has to be greater than limiting friction force for its motion to begin
$f_{L}=\mu_{s} m \mathrm{~g}=0.25 \times 3 \mathrm{~g}=7.5 \mathrm{~N}<F_{\text {applied }}$
So friction is static in nature and its value would be equal to applied force, i.e., 7 N . if the body is initially moving, then kinetic friction is present ($f_{k}=\mu_{k} m g=6 N$), acting opposite to direction of motion
As $F>f_{k}$ the block is accelerated with an acceleration of $a=\left[\frac{F-f_{k}}{m}\right]=\frac{1}{3} m s^{-2}$ and hence its speed is continuously increasing

If applied force is opposite to direction of motion, then block is under deceleration of a $=-\left[\frac{F-f_{k}}{m}\right]=-\frac{13}{3} m s^{-2}$ and hence after some time block stops and kinetic friction vanishes but applied force continuous to act
But as $F<f_{L}$, the block remains at rest and friction force acquires the value equal to applied force, i.e. friction is static in nature
(a)

Total mass of 80 wagons
$=80 \times 5 \times 10^{3}=4 \times 10^{5} \mathrm{~kg}$
Acceleration, $a=\frac{F}{M}=\frac{4 \times 10^{5}}{4 \times 10^{5}}=1 \mathrm{~ms}^{-2}$
Tension in the coupling between 30th and 31st wagon will be due to mass of remaining 50 wagons. Now, mass of remaining 50 wagons
$m=50 \times 5 \times 10^{3} \mathrm{~kg}=25 \times 10^{4} \mathrm{~kg}$
\therefore Required tension, $T=m \mathrm{~g}=125 \times 10^{4} \times 1$
$=25 \times 10^{4} \mathrm{~N}$

(a,c)

$M^{\prime} g-T=M^{\prime} a$ (i)

$$
\begin{equation*}
T=M a \tag{ii}
\end{equation*}
$$

$M^{\prime} \mathrm{g}=a\left(M+M^{\prime}\right) \Rightarrow a=\frac{M^{\prime} \mathrm{g}}{\left(M+M^{\prime}\right)}$

$m a \sin \theta=m g \cos \theta \rightarrow$ so that normal force is zero
$a=\mathrm{g} \cot \theta$
$\mathrm{g} \cot \theta=\frac{M^{\prime} \mathrm{g}}{\left(M+M^{\prime}\right)} \Rightarrow \cot \theta M+\cot \theta M^{\prime}=M^{\prime}$
$\cot \theta M+\cot \theta M^{\prime}=M^{\prime}$
$M^{\prime}=\frac{M \cot \theta}{(1-\cot \theta)}, T=M a=M g \cot \theta=M g / \tan \theta$

(b)

The magnitude of the frictional force f has to balance the weight 0.98 N acting downwards
$f_{\ell}=0.5 \times 5=2.5 \mathrm{~N}$
$f<F_{\ell}$

Therefore, the friction force is 0.98 N . Hence, option (b) is the correct option
(c,d)

$(y-\mathrm{h})+\sqrt{x^{2}+\mathrm{h}^{2}}=\ell$ or $\frac{d y}{d t}+\frac{x}{\sqrt{x^{2}+\mathrm{h}^{2}}} \frac{d x}{d t}=0$
$\frac{d y}{d t}=-\frac{x}{\sqrt{x^{2}+\mathrm{h}^{2}}} \frac{d x}{d t} \Rightarrow \frac{d y}{d t}=-\frac{3}{5}\left(-v_{A}\right)$
$V_{B}=\frac{3}{5} v_{A}(i)$
$\frac{d^{2 y}}{d t^{2}}=\frac{v_{A}^{2} \mathrm{~h}^{2}}{\left(x^{2}+\mathrm{h}^{2}\right)^{3 / 2}} \quad \Rightarrow a_{B}=v_{A}^{2} \frac{16}{(5)^{3}}$
$a_{B}=\frac{16}{125} v_{A}^{2}(\mathrm{ii})$
(b)

Let the velocity of the block M be v upwards, then $v \cos \theta=U \Rightarrow v=U / \cos \theta$
(a,b,d)

1. Since the body is accelerated, it can't have constant velocity, but it can have constant speed
2. If acceleration of the body is opposite to the velocity, then at some instant its velocity will become zero
3. As the body is accelerated, net force on it can't be zero
4. Forces may act at some angle also
(a,c)
First of all draw FBD of P_{3}. Let tensions, in three strings be T_{1}, T_{2} and T_{3}, respectively $2 T_{1}-T_{1}=0 \times a \Rightarrow T_{1}=0$

Now draw FBD of P_{4} and P_{5}
$2 T_{1}-T_{2}=0 \Rightarrow T_{2}=0$
$2 T_{2}-T_{3}=0 \Rightarrow T_{2}=T_{3}=0$

So forces acting on P_{6} and P_{7} will be that of gravity and they will be in free fall. Hence, acceleration of each of them will be g downwards
(b,d)
In a non uniform field, $\sum \overrightarrow{\mathbf{F}} \neq 0$. When dipole is aligned with field $\sum \vec{\tau}=0$ and when dipole is not aligned, $\sum \vec{\tau} \neq 0$
(b)

As in clear from figure
$R+T=(m+M) \mathrm{g}$
$R=(m+M) \mathrm{g}-T$
The system will not move till
$T \leq F$ or $T \leq \mu R$
$T \leq \mu[(m+M) \mathrm{g}-\mathrm{T}]$
$T \leq \frac{\mu(m+M) \mathrm{g}}{\mu+1}$
$\therefore \quad F_{\text {max }}=\frac{\mu(m+M) g}{\mu+1}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	A	B	C	B	C	A	D	C	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	A	A	B	D	B	B	A	B	B		

