Class: XIth
Solutions
Date :

1

3

4

5

6

7

8

9
(a)
CH_{4} has almost no acidic nature and thus, CH_{3}^{-}is the strongest base
(b)
$K_{c_{1}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4 \times 10^{-4}$
$K_{c_{2}}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathrm{NO}]}$
$\therefore K_{C_{2}}=\sqrt{\frac{1}{K_{c_{1}}}}=\sqrt{\frac{1}{4 \times 10^{-4}}}=50$
(d)
$K_{p}=\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}$ and $K_{c}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$; the solid species are not used in writing K_{c} or K_{p}
(c)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is strong acid having $\mathrm{pH}<7 . \mathrm{NaNO}_{2}$ on hydrolysis gives alkaline solution of $\mathrm{pH}>7$.
NaCl is neutral and $\mathrm{H}_{2} \mathrm{~S}$ is weak acid.
(a)
$A+B \rightleftharpoons C+D ;$
$Q=\frac{[C][D]}{[A][B]}=\frac{3 \times 4}{1 \times 2}=6$
But $K_{c}=10$;
Thus, to increase the value of Q to K_{c}, forward reaction should occur.
(d)
(A) $\mathrm{CH}_{3} \mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}$

Ammonium acetate

Although both $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$ and $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ of them are weak still $\mathrm{CH}_{3} \mathrm{COOH}$ is slightly more acidic.
\therefore Solution is acidic in nature.
(B) $\mathrm{NH}_{4} \mathrm{Cl} \quad+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$
ammonium chloride weak base strong acid
\therefore Solution is acidic in nature.
(C) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4}$
ammonium sulphate weak base strong base
\therefore Solution is acidic in nature.
(D) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
sodium acetate weak acid strong base
\therefore Solution is basic in nature.
(d)

Isoelectric point is the condition when Zwitter ions or sol particles do not move under the influence of electric field, i.e., they lose their charge.
(a)

The value of equilibrium constant is independent of volume of container.
\therefore Value of equilibrium constant will remain same (300) if volume of reaction flask is tripled.
(a)

S has +4 ox.no. in $\mathrm{H}_{2} \mathrm{SO}_{3}$ and SO_{2} both.
(b)
$\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$
$s \quad 2 s$
$K_{\text {sp }}=s(2 s)^{2}=4 s^{3}$
$K_{\text {sp }}=4\left(2.3 \times 10^{-6}\right)^{3}$
$=48.668 \times 10^{-18}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{3}$
(c)

Among the given, pH of 0.1 M CH 33 COOH is not equal to one as $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid, thus does not ionise completely.
(a)

Meq. of acetic acid $=50 \times 2=100$
Meq. of $\mathrm{CH}_{3} \mathrm{COONa}=10 \times 1=10$

$$
\mathrm{pH}=-\log K_{a}+\log \frac{\text { [Conjugate base }]}{[\text { Acid }]}
$$

or $\mathrm{pH}=-\log 10^{-5}+\log \frac{10}{100}=4$
(b)

Let the solubility of AgCl is S

$$
\mathrm{AgCl}=\mathrm{Ag}^{+}+\mathrm{Cl}^{-}
$$

$S \quad s$

$\left[\mathrm{Cl}^{-}\right.$] from $\mathrm{NaCl}=0.2$
Concentration of $\mathrm{Cl}^{-}=S+0.2$

$$
K_{\mathrm{sp}}=S(S+0.2)
$$

$$
1.8 \times 10^{-10}=S^{2}+0.2 S
$$

(S is very small as AgCl is sparingly soluble in water, thus $S^{2} \lll 1$)

$$
\begin{aligned}
& 1.8 \times 10^{-10}=0.2 S \\
& S=\frac{1.8 \times 10^{-10}}{0.2} \\
& =9.0 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

(d)
$\alpha=1.9 \times 10^{-9} ; c=\frac{1000}{18}$

$$
\begin{aligned}
K & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=c \alpha^{2} \\
& =1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18} \\
& =2.0 \times 10^{-16}
\end{aligned}
$$

(a)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}+$ heat
It is an exothermic reaction, so high temperature favours backward reaction.
Hence, equilibrium is shifted towards the left.
(b)
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}^{2-}$

$$
\begin{array}{cc}
& s \\
& K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]=(2 s)^{2} . s \\
\therefore & \\
& K_{\mathrm{sp}}=4 s^{3}
\end{array}
$$

(a)

Given, concentration of $\mathrm{NaCl}=0.2 \mathrm{M}$

$$
K_{\mathrm{sp}}(\mathrm{AgCl})=1.20 \times 10^{-10}
$$

Let the solubility of AgCl in $\mathrm{NaCl}=x$

$$
\mathrm{AgCl} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-}
$$

$$
\begin{array}{ccc}
& x & x
\end{array} \quad x
$$

ANSWER-KEY										
Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A.	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{A}	\mathbf{B}	\mathbf{D}	\mathbf{C}	\mathbf{A}	\mathbf{D}	\mathbf{D}
Q.	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
A.	A	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{A}	\mathbf{B}	\mathbf{D}	\mathbf{A}	\mathbf{B}	\mathbf{A}

