

Although both (CH₃COOH and NH₄OH) of them are weak still CH₃COOH is slightly more acidic.

∴ Solution is acidic in nature.

(B)NH4Cl+ H2O \rightarrow NH4OH+ HClammonium chlorideweak base strong acid \therefore Solution is acidic in nature.(C) (NH4)2SO4+ H2O \rightarrow 2NH4OH+ H2SO4ammonium sulphateweak base strong base \therefore Solution is acidic in nature.(D)CH3COONa+ H2O \rightarrow CH3COOH+ NaOHsodium acetateweak acid \therefore Solution is basic in nature.

10 **(d)**

Isoelectric point is the condition when Zwitter ions or sol particles do not move under the influence of electric field, *i.e.*, they lose their charge.

11 **(a)**

The value of equilibrium constant is independent of volume of container.

∴ Value of equilibrium constant will remain same (300) if volume of reaction flask is tripled.

12 **(a)**

(b)

(a)

S has +4 ox.no. in H₂SO₃ and SO₂ both.

 $CaF_2 \rightleftharpoons Ca^{2+} + 2F^-$

$$s 2s$$

$$K_{sp} = s(2s)^{2} = 4s^{3}$$

$$K_{sp} = 4(2.3 \times 10^{-6})^{3}$$

$$= 48.668 \times 10^{-18} (\text{mol dm}^{-3})^{3}$$

14 **(c)**

Among the given, pH of 0.1M CH_3COOH is not equal to one as CH_3COOH is a weak acid, thus does not ionise completely.

Meq. of acetic acid = $50 \times 2 = 100$ Meq. of CH₃COONa = $10 \times 1 = 10$ pH = $-\log K_a + \log \frac{[\text{Conjugate base}]}{[\text{Acid}]}$ or pH = $-\log 10^{-5} + \log \frac{10}{100} = 4$ (b)

16

Let the solubility of AgCl is *S*

$$AgCl = Ag^+ + Cl^-$$

S S

[Cl⁻] from NaCl=0.2

Concentration of $Cl^- = S + 0.2$

$$K_{\rm sp} = S(S + 0.2)$$

$$1.8 \times 10^{-10} = S^2 + 0.2S$$

(*S* is very small as AgCl is sparingly soluble in water, thus $S^2 \ll 1$)

$$1.8 \times 10^{-10} = 0.2S$$

$$S = \frac{1.8 \times 10^{-10}}{0.2}$$

$$= 9.0 \times 10^{-10} \text{ M}$$
17 (d)
$$\alpha = 1.9 \times 10^{-9}; c = \frac{1000}{18}$$

$$K = \frac{[\text{H}^+][\text{OH}^-]}{[\text{H}_2\text{O}]} = c\alpha^2$$

$$= 1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18}$$

$$= 2.0 \times 10^{-16}$$

18

(a)

 $N_2 + 3H_2 \rightleftharpoons 2NH_3 + heat$

It is an exothermic reaction, so high temperature favours backward reaction. Hence, equilibrium is shifted towards the left.

19

(b)

$$Ag_2CO_3(s) \rightleftharpoons 2Ag^+ + CO_3^{2-}$$

 $s \qquad 2s \qquad s$
 $K_{sp} = [Ag^+]^2 [CO_3^{2-}] = (2s)^2 \cdot s$
∴ $K_{sp} = 4s^3$
(a)

20

Given, concentration of NaCl = 0.2 M $K_{\rm sp}({\rm AgCl}) = 1.20 \times 10^{-10}$ Let the solubility of AgCl in NaCl = x

$$AgCl \rightarrow Ag^{+} + Cl^{-}$$

$$x x x$$
Solubility NaCl \rightarrow Na⁺ + Cl⁻
0.2 0.2 0.2

$$\therefore [Ag^+] = x \text{ and } [Cl^-] = (x + 0.2)$$

$$\therefore K_{sp}(AgCl) = [Ag^+][Cl^-]$$

$$= x(x + 0.2)$$

$$= x^2 + 0.2x$$

$$\therefore K_{sp} = 0.2x(x^2 \ll 1)$$
or 1.2 × 10⁻¹⁰ = 0.2x

$$\therefore x = 6 \times 10^{-10}$$

				AN	SWER-H	KEY				
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	С	С	Α	В	D	С	A	D	D
_										
Q.	11	12	13	14	15	16	17	18	19	20
А.	Α	A	B	C	A	B	D	Α	B	A
•										