Class : XIth
Subject : CHEMISTRY
Date:
DPP No. : 8

Topic:- Equilibrium

1. The conjugate acid of CO_{3}^{2-} is:
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{CO}_{3}$
c) OH^{-}
d) HCO_{3}^{-}
2. Calculate the partial pressure of carbon monoxide from the following datas
$\mathrm{CaCO}_{3} \mathrm{C} \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{g})+\mathrm{CO}_{2} \uparrow K_{p}=8 \times 10^{-2}$
$\mathrm{O}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), \quad K_{p}=2$
a) 0.2
b) 0.4
c) 1.6
d) 4
3. In aqueous solution, the ionisation constants for carbonic acid are,

$$
K_{1}=4.2 \times 10^{-7} \text { and } K_{2}=4.8 \times 10^{-11}
$$

Select the correct statement for a saturated 0.034 M solution of the carbonic acid.
a) The concentration of CO_{3}^{2-} is 0.034 M
b) The concentration of CO_{3}^{2-} is greater The concentration of H^{+}and HCO_{3}^{-}are c) approximately equal

The concentration of H^{+}is double that of d) CO_{3}^{2-}
4. The rapid change of pH near the stoichiometric point of an acid base titration is the basis of indicator detection. pH of the solution is related to the ratio of the concentration of the conjugate acid (HIn) and base (In^{-}) forms of the indicator given by the expression
a) $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{p} K_{\text {In }}-\mathrm{pH}$
b) $\log \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\mathrm{p} K_{\text {In }}-\mathrm{pH}$
c) $\log \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\mathrm{PH}-\mathrm{p} K_{\text {In }}$
d) $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{pH}-\mathrm{p} K_{\text {In }}$
5. The number of mole of hydroxide $\left[\mathrm{OH}^{-}\right]$ion in 0.3 litre of 0.005 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is:
a) 0.0075
b) 0.0015
c) 0.0030
d) 0.0050
6. 4.5 moles each of hydrogen and iodine heated in a sealed 10 L vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is
a) 1
b) 5
c) 10
d) 0.5
7. The degree of hydrolysis in hydrolytic equilibrium $A^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H} A+\mathrm{OH}^{-}$at salt concentration of 0.001 M is $\left(K_{a}=1 \times 10^{-5}\right)$
a) 1×10^{-3}
b) 1×10^{-4}
c) 5×10^{-4}
d) 1×10^{-6}
8. For a hypothetical equilibrium:
$4 A+5 B \rightleftharpoons 4 x+6 y$; the equilibrium constant K_{c} has the unit:
a) $\mathrm{mol}^{2}{ }^{\mathrm{litre}}{ }^{-2}$
b) litre mol^{-1}
c) litre $^{2} \mathrm{~mol}^{-2}$
d) $\mathrm{mol} \mathrm{litre}^{-1}$
9. Salting out action of soap is based on:
a) Complex ion formation
b) Common ion effect
c) Solubility product
d) Acid-base neutralization
10. The equilibrium constant for the reaction, $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ is $5 \times 10^{-2} \mathrm{~atm}$. The equilibrium constant of the reaction $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ would be
a) 100 atm
b) 200 atm
c) $4 \times 10^{2} \mathrm{~atm}$
d) $6.25 \times 10^{4} \mathrm{~atm}$
11. Which can be explained as applications of Le-Chatelier's principle?
a) Transport of oxygen by haemoglobin in blood
b) Removal of CO_{2} from tissues by blood
c) Tooth decay due to use of sweet substances
d) All of the above
12. Which equilibrium in gaseous phase would be unaffected by an increase in pressure?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
c) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
d) $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}$
13. The aqueous solution of AlCl_{3} is acidic due to the hydrolysis of
a) Aluminum ion
b) Chloride ion
c) Both aluminium and chloride ion
d) None of the above
14. The percentage error in $\left[\mathrm{H}^{+}\right]$made by neglecting the ionisation of water in $1.0 \times 10^{-6} \mathrm{M} \mathrm{NaOH}$ is:
a) 1%
b) 2%
c) 3%
d) 4%
15. The colour of $\mathrm{CuCr}_{2} \mathrm{O}_{7}$ solution in water is green because:
a) Cu^{2+} ions is green
b) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion is green
c) Both the ions are green
d) Cu^{2+} ion is blue and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion is yellow
16. Ammonium carbonate decomposes as
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
For the reaction, $K_{p}=2.9 \times 10^{-5} \mathrm{~atm}^{-3}$. If we start with 1 mole of the compound, the total pressure at equilibrium would be
a) 0.0766 atm
b) 0.0582 atm
c) 0.388 atm
d) 0.0194 atm
17. Ionic product of water increases if
a) Pressure is reduced
b) H^{+}is added
c) OH^{-}is added
d) Temperature increase
18. In which of the following reactions, increases in the volume at constant temperature do not affect the number of moles at equilibrium?
a) $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
b) $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
d) None of the above
19. Which one of the following is least likely to act as a Lewis base?
a) I^{+}
b) I
c) SCl_{2}
d) PCl_{3}
20. An aqueous solution of ammonium acetate is:
a) Faintly acidic
b) Fair acidic
c) Faintly alkaline
d) Almost neutral

