

Subject : CHEMISTRY DPP No. : 8 Class: XIth Date:

Topic :- Equilibrium

1.	The conjugate acid of CO_3^{2-} is:				
	a) H ₂ O	b) H ₂ CO ₃	c) OH ⁻	d) HCO_3^-	
2.	Calculate the partial	wing datas			
	$CaCO_3C \xrightarrow{\Delta} CaO(g) + C$	L .			
	$O_2(g) + C(s) \rightarrow 2CO(g)$	$K_p = 2$			
	a) 0.2	b) 0.4	c) 1.6	d)4	
3.	-	the ionisation constant $K_2 = 4.8 \times 10^{-11}$	its for carbonic acid an	·e,	
	Select the correct sta	tement for a saturated	d 0.034 M solution of t	he carbonic acid.	
	a) The concentration		The concentration than that of HCO_3^-		
	The concentration approximately equ	of H ⁺ and HCO ₃ are	The concentration CO_3^{2-}	of H ⁺ is double that of	
4.	The rapid change of pH near the stoichiometric point of an acid base titration is t				
	basis of indicator detection. pH of the solution is related to the ratio of the				
	concentration of the conjugate acid (HIn) and base (In ⁻) forms of the indicator given				
	by the expression				
	a) $\log \frac{[In^-]}{[HIn]} = pK_{In} -$	рН	b) $\log \frac{[HIn]}{[In^-]} = pK_{In} -$	рН	
	c) $\log \frac{[HIn]}{[In^-]} = PH - pK_{In}$		$d)\log\frac{[In^{-}]}{[HIn]} = pH - pK_{In}$		
5.	The number of mole of hydroxide $[OH^-]$ ion in 0.3 litre of 0.005 M solution of Ba $(OH)_2$ is:				
	a) 0.0075	b) 0.0015	c) 0.0030	d) 0.0050	
6.	$4.5\ moles$ each of hydrogen and iodine heated in a sealed $10\ L$ vessel. At equilibrium 3				
	HI were found. The equilibrium constant for $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is				
	a) 1	b)5	c) 10	d) 0.5	
7. The degree of hydrolysis in hydrolytic equilibrium $A^- + 1$				$A + OH^-$ at salt	
	concentration of 0.001 M is $(K_a = 1 \times 10^{-5})$				
	a) 1×10^{-3}	b) 1×10^{-4}	c) 5×10^{-4}	d) 1×10^{-6}	

8.	For a hypothetical equilibrium:					
	$4A + 5B \rightleftharpoons 4x + 6y$; the equilibrium constant K_c has the unit:					
	a) mol ² litre ⁻²	b) litre mol^{-1}	c) litre ² mol ⁻²	d) $\mathrm{mol}\ \mathrm{litre}^{-1}$		
9.	Salting out action of so	oap is based on:				
	a) Complex ion formation					
	b) Common ion effect					
	c) Solubility product					
	d) Acid-base neutralization					
10.	The equilibrium constant for the reaction,					
	$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$ is 5×10^{-2} atm. The equilibrium constant of the reaction					
	$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ would be					
	a) 100 atm	b) 200 atm	c) 4×10^2 atm	d) 6.25×10^4 atm		
11.	Which can be explained as applications of Le-Chatelier's principle?					
	a) Transport of oxygen by haemoglobin in blood					
	b) Removal of CO ₂ from	m tissues by blood				
	c) Tooth decay due to	use of sweet substance	S			
	d) All of the above					
12.	Which equilibrium in	gaseo <mark>us ph</mark> ase wo <mark>uld b</mark>	e unaffected by an increa	ise in pressure?		
	a) $N_2O_4 \rightleftharpoons 2NO_2$	b) $N_2 + O_2 \rightleftharpoons 2NO$	c) $N_2 + 3H_2 \rightleftharpoons 2NH_3$	d) $CO + \frac{1}{2} O_2 \rightleftharpoons CO_2$		
13.	The aqueous solution of AlCl ₃ is acidic due to the hydrolysis of					
	a) Aluminum ion		b) Chloride ion			
	c) Both aluminium an	d chlo <mark>ride i</mark> on	d) None of the above			
14.	The percentage error in $[\mathrm{H^+}]$ made by neglecting the ionisation of water in $1.0 \times 10^{-6} M$ NaOH					
	is:					
	a) 1%	b) 2%	c) 3%	d)4%		
15.	The colour of CuCr ₂ O ₇ solution in water is green because:					
	a) Cu ²⁺ ions is green					
	b) $Cr_2O_7^{2-}$ ion is green					
	c) Both the ions are green					
	d) Cu^{2+} ion is blue and $Cr_2O_7^{2-}$ ion is yellow					
16.	Ammonium carbonate decomposes as					
	$NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$					
	For the reaction, $K_p = 2.9 \times 10^{-5}$ atm ⁻³ . If we start with 1 mole of the compound, the total					
	pressure at equilibrium would be					
	a) 0.0766 atm	b) 0.0582 atm	c) 0.388 atm	d) 0.0194 atm		
17.	Ionic product of water increases if					
	a) Pressure is reduced		b) H ⁺ is added			
	c) OH ⁻ is added		d) Temperature incre	d) Temperature increase		

- 18. In which of the following reactions, increases in the volume at constant temperature do not affect the number of moles at equilibrium?
 - a) $2NH_3 \rightleftharpoons N_2 + 3H_2$

b) $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$

c) $H_2(g) + O_2(g) \rightarrow H_2O_2(g)$

- d) None of the above
- 19. Which one of the following is least likely to act as a Lewis base?
 - a) I⁺

b) I

- c) SCl₂
- d) PCl₃

- 20. An aqueous solution of ammonium acetate is:
 - a) Faintly acidic
- b) Fair acidic
- c) Faintly alkaline
- d) Almost neutral

