Class: XIth

Solutions
Subject : CHEMISTRY
Date:

Topic :- Equilibrium

1

2
(c)

\[

\]

So, $\left[\mathrm{CO}_{3}^{2-}\right]=K_{2}=4.8 \times 10^{-1}$
(d)
$\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-}$(acid).
(b)

1. $\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{g})(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \uparrow K_{p}=8 \times 10^{-2}$

$$
K_{p}=\frac{p_{\mathrm{CaO}(\mathrm{~s})} \times p_{\mathrm{CO}_{2}(\mathrm{~g})}}{p_{\mathrm{CaCO}_{3}(\mathrm{~s})}}
$$

(Heterogenous equilibrium)

$$
\begin{aligned}
& K_{p}=p_{\mathrm{CO}_{2}} \\
& p_{\mathrm{CO}_{2}}=8 \times 10^{-2}
\end{aligned}
$$

2. $\quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), \quad K_{p}=2$

$$
K_{p}=\frac{p_{\mathrm{Co}(\mathrm{~g})}^{2}}{p_{\mathrm{CO}_{2}} \times p_{\mathrm{C}(\mathrm{~s})}}
$$

(Heterogenous equilibrium)

$$
\begin{aligned}
& K_{p}=\frac{p_{\mathrm{CO}}^{2}}{p_{\mathrm{CO}_{2}}} \\
& 2=\frac{p_{\mathrm{CO}}^{2}}{8 \times 10^{-2}} \\
& p_{\mathrm{CO}}^{2}=2 \times 8 \times 10^{-2} \\
& p_{\mathrm{CO}}=0.4 \mathrm{~atm}
\end{aligned}
$$

(d)

Acid indicators are generally weak acid. The dissociation of indicator HIn takes
place as follows

$$
\begin{aligned}
& \mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-} \\
& K_{\mathrm{In}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
\end{aligned}
$$

or $\quad\left[\mathrm{H}^{+}\right]=K_{\mathrm{In}_{\left[\mathrm{In}^{-}\right]}}{ }^{[\mathrm{HIn}]}$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(K_{\mathrm{In}} \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}\right) \\
& =-\log K_{\mathrm{In}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \\
& =\mathrm{p} K_{\text {In }}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
\end{aligned}
$$

or $\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{pH}-\mathrm{p} K_{\text {In }}$
(c)

Mole $\mathrm{OH}^{-}=M \times V_{\text {in litre }}$
\therefore No of $\mathrm{OH}^{-}=0.3 \times 0.005 \times 2=0.0030$.
(a)

Initial concentration

$$
\begin{aligned}
& \mathrm{H}_{2}+\quad \mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI} \\
& 4.5 \quad 4.5 \quad 0 \\
& (4.5-x)(4.5-x) 2 x
\end{aligned}
$$

From equation, $2 x=3$
$\therefore x=\frac{3}{2}=1.5$
So, concentration at equilibrium
$\left[\mathrm{H}_{2}\right]=4.5-1.5=3$
$\left[\mathrm{I}_{2}\right]=4.5-1.5=3$
$[\mathrm{HI}]=3$
$\therefore K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{3 \times 3}{3 \times 3}=1$
(a)

Given, $K_{w}=10^{-14}, K_{a}=10^{-5}$
Concentration of salt $=0.001 \mathrm{M}$

$$
\therefore \quad K_{h}=\frac{K_{w}}{K_{a}}=\frac{10^{-14}}{10^{-5}}=10^{-9}
$$

According to equation

$$
A^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H} A+\mathrm{OH}^{-}
$$

Let degree of hydrolysis $=h$

$$
\begin{array}{ll}
\therefore & 0.001(1-h)(0.001 \times h)(0.001 \times h) \\
\therefore & K_{h}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[A^{-}\right]}=\frac{(0.001 \times h)(0.001 \times h)}{0.001(1-h)} \\
\text { or } & 10^{-9}=(0.001 h)^{2}[\because 0.001(1-h)=1]
\end{array}
$$

$$
\begin{array}{cc}
\text { or } & 10^{-6}=h^{2} \\
\therefore & 10^{-3}=h
\end{array}
$$

(d)

Unit of $K_{c}=[]^{\Delta n} . \Delta n=+1$.
(c)

To precipitate soap from its saturated solution on addition of salt is called salting out action of soap.
$R \mathrm{COONa} \rightleftharpoons R \mathrm{COO}^{-}+\mathrm{Na}^{+}$
$K_{s p}=\left[R \mathrm{COO}^{-}\right]\left[\mathrm{Na}^{+}\right]$
In presence of $\mathrm{NaCl},\left[\mathrm{Na}^{+}\right]$increases and thus, the product of $\left[\mathrm{Na}^{+}\right]\left[R \mathrm{COO}^{-}\right]$exceeds in $K_{s p}$ to show precipitation of soap.
(c)
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$

$$
\begin{equation*}
K_{1}=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}} \tag{i}
\end{equation*}
$$

$2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$

$$
\begin{equation*}
K_{2}=\frac{\left[\mathrm{so}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii)

$$
\begin{aligned}
K_{2} & =\frac{1}{K_{1}^{2}} \\
& =\frac{1}{\left(5 \times 10^{-2}\right)^{2}}=\frac{1}{25 \times 10^{-4}} \\
& =\frac{100 \times 10^{2}}{25} \\
& =4 \times 10^{2} \mathrm{~atm}
\end{aligned}
$$

(d)
(i) The haemoglobin of RBC combines with oxygen in lungs following the equilibrium,

$$
\mathrm{H}_{b}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{b} \mathrm{O}_{2}(\mathrm{~s})
$$

When these are at lungs, the partial pressure of O_{2} being appreciable to show forward reaction, however, when they pass to tissues, the partial pressure of O_{2} decreases to favour backward reaction releasing O_{2}.
(ii) Removal of CO_{2} from blood is based on the equilibrium,

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)
$$

In tissues CO_{2} gets dissolved in $\mathrm{H}_{2} \mathrm{O}$ due to high pressure whereas in lungs, the CO_{2} is released out because of low pressure of CO_{2}.
(iii) Tooth enamel substance (hydroxyapatite) $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}$ shows the following
equilibrium,

The use of sweet material or fermentation produces H^{+}, which combines with OH^{-}to favour demineralization of enamel causing tooth decay.
(b)

Pressure has no effect on equilibrium if $\Delta n=0$
(a)

Aqueous solution of AlCl_{3} is acidic due to the hydrolysis of aluminium ion
$\mathrm{AlCl}_{3} \xrightarrow{\text { Hydrolysis }} \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}^{+}$
(a)
$\mathrm{H}^{+}=1.0 \times 10^{-8}=10 \times 10^{-9}$
Also, if ionisation is not neglected

$$
\left.\left.\begin{array}{rlrl}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{10^{-8}+a}{\mathrm{H}^{+}}+\underset{a}{\mathrm{OH}^{-}} \\
& a \times\left(10^{-8}+a\right) & =10^{-14} \\
& \therefore & & a
\end{array}\right)=9.9 \times 10^{-9}\right)
$$

(d)

Thus, a solution of blue and yellow ions appears green.
(b)
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
At eq. if partial pressure of $\mathrm{CO}_{2}=p$
Then that of $\mathrm{NH}_{3}=2 p$
$K_{p}=p_{\mathrm{NH}_{3}}^{2} \times p_{\mathrm{CO}_{2}}=(2 p)^{2} \times p=4 p^{3}$
$=2.9 \times 10^{-5}$ or $p^{3}=0.725 \times 10^{-5}$
or $p=1.935 \times 10^{-2}$
Hence, total pressure $=p=5.81 \times 10^{-2}=0.0581 \mathrm{~atm}$

$$
\begin{array}{cl}
K_{\text {acid }} \approx K_{\text {base }} \\
\mathrm{CH}_{3} \mathrm{COOH} & \mathrm{NH}_{4} \mathrm{OH}
\end{array}
$$

ANSWER-KEY										
Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A.	\mathbf{D}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{C}	\mathbf{A}	A	\mathbf{D}	\mathbf{C}	\mathbf{C}
Q.	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
A.	D	B	A	A	D	B	D	D	A	D

