

place as follows $HIn \rightleftharpoons H^+ + In^ K_{\rm In} = \frac{[\rm H^+][\rm In^-]}{[\rm HIn]}$ $[\mathrm{H}^+] = K_{\mathrm{In}} \frac{[\mathrm{HIn}]}{[\mathrm{In}^-]}$ or $pH = -\log[H^+]$ $= -\log\left(K_{\ln}\frac{[\text{HIn}]}{[\ln^{-}]}\right)$ $= -\log K_{\rm In} + \log \frac{[{\rm In}^-]}{[{\rm HIn}]}$ $= pK_{In} + \log \frac{[In^-]}{[HIn]}$ or $\log \frac{[In^-]}{[HIn]} = pH - pK_{In}$ (c) Mole $OH^- = M \times V_{\text{in litre}}$: No of $OH^- = 0.3 \times 0.005 \times 2 = 0.0030$. (a) $H_2 +$ I₂⇒2HI 4.5 Initial concentration 4.5 0 (4.5-x)(4.5-x) 2xFrom equation, 2x = 3 $\therefore x = \frac{3}{2} = 1.5$ So, concentration at equilibrium $[H_2] = 4.5 - 1.5 = 3$ $[I_2] = 4.5 - 1.5 = 3$ [HI] = 3 $\therefore K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{3 \times 3}{3 \times 3} = 1$ (a) Given, $K_w = 10^{-14}$, $K_a = 10^{-5}$ Concentration of salt = 0.001 M $K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$:. According to equation $A^- + H_2 0 \rightleftharpoons HA + 0H^-$ Let degree of hydrolysis=h:. $0.001(1-h)(0.001 \times h)(0.001 \times h)$ $K_h = \frac{[\text{HA}][\text{OH}^-]}{[A^-]} = \frac{(0.001 \times h)(0.001 \times h)}{0.001(1-h)}$:. $10^{-9} = (0.001h)^2 [:: 0.001(1-h) = 1]$ or

5

6

7

or
$$10^{-6} = h^2$$

 $\therefore \quad 10^{-3} = h$
(d)

8

Unit of $K_c = []^{\Delta n} \cdot \Delta n = +1.$

9

(c)

(c)

To precipitate soap from its saturated solution on addition of salt is called salting out action of soap.

 $RCOONa \rightleftharpoons RCOO^{-} + Na^{+}$ $K_{sp} = [RCOO^{-}][Na^{+}]$

In presence of NaCl, [Na⁺] increases and thus, the product of [Na⁺][RCOO⁻] exceeds in K_{sp} to show precipitation of soap.

10

SO₂ +
$$\frac{1}{2}$$
O₂=SO₃
 $K_1 = \frac{[SO_3]}{[SO_2][O_2]^{1/2}}$...(i)
2SO₃=2SO₂ + O₂
 $K_2 = \frac{[SO_2]^2[O_2]}{[SO_3]^2}$...(ii)
From Eqs. (i) and (ii)
 $K_2 = \frac{1}{K_1^2}$
 $= \frac{1}{(5 \times 10^{-2})^2} = \frac{1}{25 \times 10^{-4}}$
 $= \frac{100 \times 10^2}{25}$
 $= 4 \times 10^2$ atm

11

(d)

(i) The haemoglobin of RBC combines with oxygen in lungs following the equilibrium,

 $H_b(s) + O_2(g) \rightleftharpoons H_bO_2(s)$

When these are at lungs, the partial pressure of O_2 being appreciable to show forward reaction, however, when they pass to tissues, the partial pressure of O_2 decreases to favour backward reaction releasing O_2 .

(ii) Removal of CO₂ from blood is based on the equilibrium,

 $\text{CO}_2(g) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{H}\text{CO}_3^-(aq)$

In tissues CO_2 gets dissolved in H_2O due to high pressure whereas in lungs, the CO_2 is released out because of low pressure of CO_2 .

(iii) Tooth enamel substance (hydroxyapatite) Ca₅(PO₄)₃OH shows the following

equilibrium,

$$Ca_{5}(PO_{4})_{3}OH \xleftarrow{\text{Demineralization}}{5Ca^{2+}(aq) + 3PO_{4}^{3-}(aq) + OH^{-}(aq)}$$

The use of sweet material or fermentation produces H^+ , which combines with OH^- to favour demineralization of enamel causing tooth decay.

12 **(b)**

(a)

Pressure has no effect on equilibrium if $\Delta n = 0$

13

Aqueous solution of AlCl₃ is acidic due to the hydrolysis of aluminium ion $AlCl_3 \xrightarrow{Hydrolysis} Al(OH)_3 + H^+$ (a) $\rm H^{+} = 1.0 \times 10^{-8} = 10 \times 10^{-9}$ Also, if ionisation is not neglected $H_2 O \rightleftharpoons \underset{10^{-8} + a}{H^+} + \underset{a}{O H^-}$ $a \times (10^{-8} + a) = 10^{-14}$ $a = 9.9 \times 10^{-9}$:. % emr = $\frac{10 \times 10^{-9} - 9.9 \times 10^{-9}}{10 \times 10^{-9}}$:. = 1%. (d) Thus, a solution of blue and yellow ions appears green. **(b)** $NH_2COONH_4(g) \rightleftharpoons 2NH_3(g) + CO_2(g)$ At eq. if partial pressure of $CO_2 = p$ Then that of $NH_3 = 2p$ $K_p = p_{\rm NH_3}^2 \times p_{\rm CO_2} = (2p)^2 \times p = 4p^3$ $= 2.9 \times 10^{-5}$ or $p^3 = 0.725 \times 10^{-5}$ or $p = 1.935 \times 10^{-2}$ Hence, total pressure $= p = 5.81 \times 10^{-2} = 0.0581$ atm (d) K_w increases with increase in temperature (d) temperature (a)

14

15

16

17

18

In all the given reactions, equilibrium is affected by the increase in volume at constant

19

Lewis bases are electron pair donor. I⁺ is electron deficient, hence do not act as Lewis base.

20 (d)

CH₃COONH₄ is a salt of weak acid and weak base and

 $\begin{array}{l} K_{\rm acid} \approx K_{\rm base} \\ {\rm CH}_{3}{\rm COOH} \quad {\rm NH}_{4}{\rm OH} \end{array}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	В	С	D	С	A	Α	D	С	С
Q .	11	12	13	14	15	16	17	18	19	20
A.	D	В	Α	A	D	В	D	D	Α	D

