Class: XIth
Date:
Subject : CHEMISTRY
DPP No. : 7

Topic :- Equilibrium

1. A white salt is readily soluble in water and gives a colourless solution with a pH of about 9 . The salt would be:
a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
b) $\mathrm{CH}_{3} \mathrm{COONa}$
c) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) CaCO_{3}
2. The dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}. The hydrolysis constant of $\mathrm{NH}_{4} \mathrm{Cl}$ would be:
a) 1.8×10^{-19}
b) 1.8×10^{-5}
c) 5.55×10^{-5}
d) 5.55×10^{-10}
3. 50 mL of $\mathrm{H}_{2} \mathrm{O}$ is added to 50 mL of $1 \times 10^{-3} \mathrm{M}$ barium hydroxide solution. What is the pH of the resulting solution?
a) 3.0
b) 3.3
c) 11.0
d) 11.7
4. The indicator used in titration of oxalic acid with caustic soda solution is
a) Methyl orange
b) Methyl red
c) Fluorescein
d) Phenolphthalein
5. For $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, at equilibrium some I_{2} is added. What happens to the equilibrium?
a) It is shifted to the
b) It gets shifted to the
c) It remains
d) None of the above right
left unchanged
6. Which of the following is a characteristic of a reversible reaction?
a) It can never proceed to completion
b) It can be influenced by a catalyst
c) Number of moles of reactants and products are equal
d) None of the above
7. An aqueous solution of hydrogen sulphide shows the equilibrium,

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}
$$

If dilute hydrochloric acid is added to an aqueous solution of hydrogen sulphide without any change in temperature, then:
a) The equilibrium constant will change
b) The concentration of HS^{-}will increase
c) The concentration of undissociated hydrogen sulphide will decrease
d) The concentration of HS^{-}will decreases
8. Le-Chatelier's principle is not applicable to:
a) Homogeneous reactions
b) Heterogeneous reactions
c) Homogeneous or heterogeneous systems in equilibrium
d) Systems not in equilibrium
9. If $\mathrm{p} K_{a}$ values of four acids are given below at $25^{\circ} \mathrm{C}$, the strongest acid is
a) 2.0
b) 2.5
c) 3.0
d) 4.0
10. Weakest base among the following is:
a) NaOH
b) $\mathrm{Ca}(\mathrm{OH})_{2}$
c) $\mathrm{Zn}(\mathrm{OH})_{2}$
d) KOH
11. A solution of pH 9.0 is one thousand times as basic as a solution of pH :
a) 6
b) 7
c) 4
d) 10
12. Aprotic solvent is:
a) CCl_{4}
b) $\mathrm{C}_{6} \mathrm{H}_{6}$
c) SO_{2}
d) All of these
13. The hydroxide with highest solubility product is:
a) $\mathrm{Al}(\mathrm{OH})_{3}$
b) $\mathrm{Co}(\mathrm{OH})_{2}$
c) $\mathrm{Cr}(\mathrm{OH})_{3}$
d) $\mathrm{Fe}(\mathrm{OH})_{3}$
14. In the absence of formation of complex ions by the addition of a common ion, the solubility of a given salt is:
a) Increased
b) Decreased
c) Unaffected
d) First increased and then decreased
15. The pH of 0.1 M NaHS is, $K_{a_{1}}$ and $K_{a_{2}}$ for $\mathrm{H}_{2} \mathrm{~S}$ are 1.3×10^{-7} and 7.1×10^{-15} respectively:
a) 10.52
b) 9.52
c) 12.52
d) 13.52
16. $A+B \rightleftharpoons C+D$

Initially moles of A and B are equal. At equilibrium, moles of C are three times that of A. the equilibrium constant of the reaction will be
a) 1
b) 3
c) 4
d) 9
17. The strongest acid among the following is:
a) $\mathrm{ClO}_{3}(\mathrm{OH})$
b) $\mathrm{ClO}_{2}(\mathrm{OH})$
c) $\mathrm{SO}\left(\mathrm{OH}_{2}\right)$
d) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$
18. The equilibrium constant in a reversible reaction at a given temperature
a) Does not depend on the initial concentrations
b) Depends on the initial concentrations of the reactants
c) Depends on the concentration of the products at equilibrium
d) It is not characteristic of the reaction
19. For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ at 720 K , the value of equilibrium constant is 50 , when equilibrium concentration of both H_{2} and I_{2} is $0.5 \mathrm{M} . K_{p}$ under the same conditions will be :
a) 0.02
b) 0.2
c) 50
d) 50 RT
20. If 340 g of a mixture of N_{2} and H_{2} in the correct ratio gave a 20% yield of NH_{3}. The mass produced would be :
a) 16 g
b) 17 g
c) 20 g
d) 68 g

