

In a reversible reaction some amount of the reactants remains unconverted into products and it never go for completion

7

(d)

(d)

 K_a for $H_2S = \frac{[H^+][HS^-]}{[H_2S]}$;

An increase in $[H^+]$ will show a decrease in $[HS^-]$ to maintain constant K_a value.

8

Le-Chatelier proposed a principle to explain the effect of P, T and C on systems in equilibrium.

9	(a)									
	$pK_a = -\log K_a$									
	Higher the value of pK_a , weaker is the acid. Among given choices 2.0, 2.5, 3.0 and									
	4.0 the value 2.0 is lowest so this acid is strongest.									
10	(c)									
	Alkali and alkaline earth metal hydroxides are strong base.									
11	(a)									
	$pH = 9 :: [H^+] = 10^{-9}$									
	$pH = 6 \therefore [H^+] = 10^{-6}$									
12	(d)									
10	Aprotic solvents are those from which hydrogen ion or OH^- cannot be derived.									
13	(D) Co(OH), is not precipitated in III on or it more soluble and thus has high K									
14	$Co(OH)_2$ is not precipitated in III gp. or it more soluble and thus, has high K_{sp} .									
14	$[A^+][B^-] > K$									
15	$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} D \end{bmatrix} \ge \Lambda_{\text{sp}}.$									
10										
	$pH = \frac{1}{2}[pK_{a_1} + pK_{a_2}] = \frac{1}{2}[14.15 + 6.89] = 10.52$									
16	(d)									
	$A + B \rightleftharpoons C + D$									
	1 1 0 0 Initially									
	(1-3x)(1-3x) 3x 3x At equilibrium (given)									
	At equilibrium, the remaining moles of A is x , because $3x$ moles of C are produced.									
	$\Rightarrow 1 - 3x = x$									
	\therefore $x = \frac{1}{4}$									
	Equilibrium constant,									
	$K_{c} = \frac{[C][D]}{[A][B]} = \frac{3x.3x}{(1-2x)^{2}}$									
	On nutting the value of r we get									
	$9 \times \frac{1}{2}$ o									
	$K_c = \frac{16}{1 + \frac{9}{16} - \frac{6}{6}} = \frac{7}{1} = 9$									
17	(a)									
	The acidic character of HClO ₄ is maximum. The order is									
	$\mathrm{HClO}_4 > \mathrm{HClO}_3 > \mathrm{H}_2\mathrm{SO}_4 > \mathrm{H}_2\mathrm{SO}_3.$									
19	(c)									
	K_p is independent of initial concentration.									
20	(d)									
	20% yield of NH ₃ and thus, 20% of 340 g is 20×340									
	$=\frac{26\times 0.05}{100}=68$ g									

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	В	D	С	D	Α	А	D	D	Α	С		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	Α	D	В	В	A	D	A	Α	С	D		