Class: XIth

Date:
Solutions

1

2
(c)

In water, barium hydroxide is hydrolysed as followers
$\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$
Conc. Of $\mathrm{Ba}^{2+}=1 \times 10^{-3} \mathrm{M}$
Conc. of $\left[\mathrm{OH}^{-}\right]=2 \times 1 \times 10^{-3} \mathrm{M}$

$$
=2 \times 10^{-3} \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$$
=-\log \left(2 \times 10^{-3}\right)
$$

$=2.69$

$$
\begin{aligned}
\mathrm{pH}+\mathrm{pOH} & =14 \\
\mathrm{pH} & =14-\mathrm{pOH} \\
& =14-2.69 \\
& =11.3 \\
& \approx 11.0
\end{aligned}
$$

(d)
K_{a} for $\mathrm{H}_{2} \mathrm{~S}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$;
An increase in $\left[\mathrm{H}^{+}\right]$will show a decrease in $\left[\mathrm{HS}^{-}\right]$to maintain constant K_{a} value.
8
(b)

Hydrolysis of $\mathrm{CH}_{3} \mathrm{COO}^{-}$give alkaline solution.
(d)

For hydrolysis of NH_{4}^{+};
$K_{H}=\frac{K_{w}}{K_{p}}=\frac{10^{-14}}{1.8 \times 10^{-5}}=5.5 \times 10^{-10}$
(d)

In the titrationof weak acid with strong base, phenolphthalein is used
(a)

In a reversible reaction some amount of the reactants remains unconverted into products and it never go for completion
(d)

Le-Chatelier proposed a principle to explain the effect of P, T and C on systems in equilibrium.
(a)
$\mathrm{p} K_{a}=-\log K_{a}$
Higher the value of $\mathrm{p} K_{a}$, weaker is the acid. Among given choices 2.0, 2.5, 3.0 and 4.0 the value 2.0 is lowest so this acid is strongest.
(c)

Alkali and alkaline earth metal hydroxides are strong base.
(a)
$\mathrm{pH}=9 \therefore\left[\mathrm{H}^{+}\right]=10^{-9}$
$\mathrm{pH}=6 \therefore\left[\mathrm{H}^{+}\right]=10^{-6}$
(d)

Aprotic solvents are those from which hydrogen ion or OH^{-}cannot be derived.
(b)
$\mathrm{Co}(\mathrm{OH})_{2}$ is not precipitated in III gp. or it more soluble and thus, has high $K_{\text {sp }}$.
(b)
$\left[A^{+}\right]\left[B^{-}\right]>K_{\text {sp }}$.
(a)
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{a_{1}}+\mathrm{p} K_{a_{2}}\right]=\frac{1}{2}[14.15+6.89]=10.52$
(d)
$\begin{aligned} & A \\ & 1\end{aligned}+B \rightleftharpoons C+D_{0} \quad$ Initially
$(1-3 x)(1-3 x) \quad 3 x \quad 3 x$ At equilibrium (given)

At equilibrium, the remaining moles of A is x, because $3 x$ moles of C are produced.

$$
\begin{array}{cc}
\Rightarrow & 1-3 x=x \\
\therefore & x=\frac{1}{4}
\end{array}
$$

Equilibrium constant,

$$
K_{c}=\frac{[C][D]}{[A][B]}=\frac{3 x \cdot 3 x}{(1-3 x)^{2}}
$$

On putting the value of x, we get,

$$
K_{C}=\frac{9 \times \frac{1}{16}}{1+\frac{9}{16}-\frac{6}{4}}=\frac{9}{1}=9
$$

(a)

The acidic character of HClO_{4} is maximum. The order is
$\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{H}_{2} \mathrm{SO}_{3}$.
(c)
K_{p} is independent of initial concentration.
(d)
20% yield of NH_{3} and thus, 20% of 340 g is

$$
=\frac{20 \times 340}{100}=68 \mathrm{~g}
$$

ANSWER-KEY										
Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A.	\mathbf{B}	\mathbf{D}	\mathbf{C}	\mathbf{D}	\mathbf{A}	\mathbf{A}	\mathbf{D}	\mathbf{D}	\mathbf{A}	\mathbf{C}
Q.	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
A.	A	D	B	B	A	D	A	A	C	D

