Class : XIth
Subject : CHEMISTRY
Date:
DPP No. : 6

Topic :- Equilibrium

1. A buffer mixture of acetic acid and potassium acetate has $\mathrm{pH}=5.24$. The ratio of $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] /[\mathrm{C}$ $\left.\mathrm{H}_{3} \mathrm{COOH}\right]$ in this buffer is, $\left(\mathrm{p} K_{a}=4.74\right)$:
a) $3: 1$
b) $1: 3$
c) $1: 1$
d) $1: 2$
2. $\mathrm{p} K_{a}$ of acetic acid is 4.74. The concentration of $\mathrm{CH}_{3} \mathrm{COONa}$ is 0.01 M . The pH of CH_{3} COONa is
a) 3.37
b) 4.37
c) 4.74
d) 0.474
3. If $1 \mathrm{MCH}_{3} \mathrm{COONa}$ is added to $1 \mathrm{MCH}_{3} \mathrm{COOH}$:
a) pH of the solution increases
b) pH decreases
c) pH does not change
d) None of the above
4. 2.5 mL of $\frac{2}{5} \mathrm{M}$ weak monoacidic base ($K_{b}=1 \times 10^{-12}$ at $\left.25^{\circ} \mathrm{C}\right)$ is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is ($K_{w}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$)
a) $3.7 \times 10^{-13} \mathrm{M}$
b) $3.2 \times 10^{-7} \mathrm{M}$
c) $3.2 \times 10^{-2} \mathrm{M}$
d) $2.7 \times 10^{-2} \mathrm{M}$
5. Solubility product of a salt $A B$ is $1 \times 10^{-8} \mathrm{M}^{2}$ in a solution in which the concentration of A^{+}ions is $10^{-3} \mathrm{M}$. The salt will precipitate when the concentration of B^{-}ions is kept
a) Between 10^{-8} to $10^{-7} \mathrm{M}$
b) Between $10^{-7} \mathrm{M}$ to $10^{-8} \mathrm{M}$
c) $>10^{-5} \mathrm{M}$
d) $<10^{-8} \mathrm{M}$
6. For the gaseous reaction, $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}, \Delta H=-130 \mathrm{~kJ} \mathrm{~mol}^{-1}$ carried in a closed vessel, the equilibrium concentration of the $\mathrm{C}_{2} \mathrm{H}_{6}$ can definitely be increased by
a) Increasing temperature and decreasingb) Decreasing temperature and increasing pressure
pressure
c) Increasing temperature and pressure both
d) Decreasing temperature and pressure only
7. Chemical equilibrium is dynamic in nature because:
a) The equilibrium is maintained rapidly
b) The concentration of reactants and products become same at equilibrium
c) The concentration of reactants and products decrease with time
d) Both forward and backward reactions occur at all times with same speed
8. What happens to the yield on application of high pressure in the Haber's synthesis of ammonia?
a) Increases
b) Decreases
c) Unaffected
d) Reaction stops
9. The buffering action of an acidic buffer is maximum when its pH is equal to
a) 5
b) 7
c) 1
d) $\mathrm{p} K_{a}$
10. $\mathrm{H} A$ is a weak acid. The pH of $0.1 \mathrm{M} \mathrm{H} A$ solution is 2 . What is the degree of dissociation (α) of $\mathrm{H} A$?
a) 0.5
b) 0.2
c) 0.1
d) 0.301
11. Which of the following is a wrong statement about equilibrium state?
a) Rate of forward reaction= Rate of backward reaction
b) Equilibrium is dynamic
c) Catalysts increase value of equilibrium constant
d) Free energy change is zero
12. In an experiment to determine the enthalpy of neutralization of sodium hydroxide with sulphuric acid, $50 \mathrm{~cm}^{3}$ of 0.4 M sodium hydroxide were titrated thermometrically with 0.25 M sulphuric acid. Which of the following plots gives the correct representation?
a)

b)

c)

d)

13. H^{+}ion produces common ion effect in the wet analysis of:
a) Group I metals
b) Group II metals
c) Group III metals
d) Group IV metals
14. 15 moles of H_{2} and 5.2 moles of I_{2} are mixed and allowed to attain equilibrium at $500^{\circ} \mathrm{C}$. At equilibrium, the concentration of HI is found to be 10 moles. The equilibrium constant for the formation of HI is
a) 50
b) 15
c) 100
d) 25
15. $10^{-6} M \mathrm{HCl}$ is diluted to 100 times. Its pH is:
a) 6.0
b) 8.0
c) 6.95
d) 9.5
16. For the reaction, $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$, the position of equilibrium can be shifted to the right by
a) Doubling the volume
b) Increasing the temperature
c) Addition of Cl_{2} at constant volume
d) Addition of equimolar quantities of PCl_{3} and PCl_{5}
17. The pH of an aqueous solution containing $\left[\mathrm{H}^{+}\right]$concentration $=3.0 \times 10^{-3} \mathrm{M}$. The pH of the solution is
a) 2.523
b) 3.0
c) 2.471
d) None of these
18. The addition of which salt will decrease the H^{+}concentration of HCN solution?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
c) AgNO_{3}
d) NaCN
19. The pH of the solution obtained by mixing 10 mL of $10^{-1} \mathrm{~N} \mathrm{HCl}$ and 10 mL of $10^{-1} \mathrm{~N} \mathrm{NaOH}$ is:
a) 8
b) 2
c) 7
d) None of these
20. The solubility product of PbCl_{2} is 2.3×10^{-32}. Its solubility will be
a) $1.78 \times 10^{-11} \mathrm{~g} / \mathrm{L}$
b) $2.95 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
c) $3.42 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
d) $4.95 \times 10^{-9} \mathrm{~g} / \mathrm{L}$
