

4

Weak monoacidic base *e.g.*, BOH is neutralised as follows

 $BOH + HCl \rightarrow BCl + H_2O$

At equivalence point all BOH gets converted into salt and remember! The concentration of H⁺ (or pH of solution) is due to hydrolysis of resultant salt (BCl, cationic, hydrolysis here)

$$B^+$$
 + $H_20 \rightleftharpoons BOH$ + H^+

$$C(1-h)$$
 Ch Ch

Volume of HCl used up

$$V_a = \frac{N_b V_b}{N_a} = \frac{2.5 \times 2 \times 15}{2 \times 5} = 7.5 \text{ mL}$$

Concentration of salt

$$[BCl] = \frac{\text{conc.of base}}{\text{total volume}} = \frac{2 \times 2.5}{5(7.5 + 2.5)} = \frac{1}{10} = 0.1$$

$$K_h = \frac{Ch^2}{1-h} = \frac{K_w}{K_b}$$

(*h* should be estimated whether that can be neglected or not) on calculating h=0.27 (significant, not negligible)

 $[H^+] = Ch = 0.1 \times 0.27 = 2.7 \times 10^{-2} M$

5

(c)

(b)

A salt is precipitated only when the product of ionic concentration is more than its solubility product.

$$K_{\rm sp} = 1 \times 10^{-8}$$

 $[A^+] = 10^{-3} \,\mathrm{M}$
 $[B^-] = \frac{1 \times 10^{-8}}{10^{-3}} = 10^{-5} \,\mathrm{M}$

So, *AB* will be more precipitated only when the concentration of $[B^-]$ is more than 10^{-5} M.

6

According to Le-Chatelier's principle exothermic reactions are favourable at low pressure. The reaction in which number of moles decreases are favourable at high pressure or low volume.

 $C_2H_4 + H_2 \rightleftharpoons C_2H_6$, $\Delta H = -130 \text{ kJ mol}^{-1}$

• The reaction is exothermic and number of moles of reactants are decreasing.

• The reaction rate is increased by decreasing temperature and increasing

pressure.

(d)

(a)

(d)

(c)

7

The reaction does not cease up but goes in both directions with same speed.

8

Haber's process of synthesis of ammonia

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$ $N_2 + 3H_2 \overbrace{-750 \text{ K}}^{\text{Fe, Mo}} 2NH_3$

^{2000 atm} Since, the number of molecules of gaseous products are less than the number of molecules of gaseous reactants, thus according to Le-Chatelier's principle, high

pressure favours the forward reaction *i.e.*, more ammonia will be obtained.

9

Buffer capacity of an acidic buffer is maximum when the ratio of HA to A^- is unity.

Since, pH of acidic buffer = $pK_a + \log \frac{[A^-]}{[HA]}$

For maximum buffer capacity, $[A^-] = [HA]$

$$\therefore$$
 pH = pK_a

10

 \therefore pH = 2

 $[H^+] = 10^{-2}$ $[H^+] = N.\alpha$ $10^{-2} = 0.1 \times \alpha$ $\alpha = \frac{10^{-2}}{0.1}$ $\alpha = 0.1$

11 **(c)**

:.

Since, catalyst increases the rate of forward reaction as well as the rate of backward reaction, it does not affect the equilibrium constant.

12 **(d)**

Meq. of H_2SO_4 needed for 20 Meq. of NaOH = 20 Thus, volume of H_2SO_4 needed = V_{mL}

or $V \times 0.25 \times 2 = 20$

 \therefore V = 40 mL

Also, temperature increases during neutralization and then decreases after neutralization on further addition of acid.

13

(b)

The dissociation of H_2S decreases in presence of acid (or H^+ a common ion furnished by an acid).

14

(a)

$$H_2 + I_2 \rightleftharpoons 2HI$$

 $15 \quad 5.2 \quad 0$
 $(15-5) \quad (5.2-5) \quad 10$
Equilibrium constant
 $(K_c) = \frac{[HI]^2}{[H_2][I_2]} = \frac{10 \times 10}{10 \times 0.2} = 50$
(c)

15

New concentration of,

HCl =
$$\frac{10^{-6}}{100} = 10^{-8} M$$

∴ [H⁺] = $10^{-18} + 10^{-7}$
= $1.1 \times 10^{-7} M$
∴ pH ≈ 7
(a)
pH = $-\log[H^+]$
= $-\log(3 \times 10^{-3})$
= $3 - \log 3$
= $3 - 0.4771$
= 2.5229

18

(d)

17

The dissociation of HCN will decrease in presence of NaCN due to common ion effect.

19 **(c)**

Meq. of HCl = $10 \times 10^{-1} = 1$ Meq. of NaOH = $10 \times 10^{-1} = 1$

Thus, both are neutralized and 1 Meq. Of NaCl (a salt of strong acid and strong base) which does not hydrolyse and thus, pH = 7.

20

(d)
PbCl₂⇒Pb²⁺ +2I⁻
^{s mol/L} ^s ^{2s}
Hence,
$$K_{sp} = [Pb^{2+}][I^{-}]^{2}$$

 $= (s)(2s)^{2}$
 $= 4s^{3}$
∴ $s = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{2.3 \times 10^{-32}}{10}}$
 $= 1.78 \times 10^{-11} \text{mol/L}$
 $= 1.78 \times 10^{-11} \times 278 \text{ g/L}$
 $= 4.95 \times 10^{-9} \text{ g/L}$

ANSWER-KEY										
Q .	1	2	3	4	5	6	7	8	9	10
A.	Α	Α	Α	D	С	В	D	Α	D	С
Q .	11	12	13	14	15	16	17	18	19	20
A.	С	D	В	Α	С	С	A	D	С	D