Class: XIth
Subject : CHEMISTRY
Date :
DPP No. : 5

Topic:- Equilibrium

1. Solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ at ordinary temperature is $1.96 \times 10^{-11} . \mathrm{pH}$ of a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ will be
a) 10.53
b) 8.47
c) 6.94
d) 3.47
2. For the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$:
a) $K_{c}=2 K_{p}$
b) $K_{c}>K_{p}$
c) $K_{c}=K_{p}$
d) $K_{c}<K_{p}$
3. When CaCO_{3} is heated at a constant temperature in a closed container, the pressure due to CO_{2} produced will:
a) Change with the amount of CaCO_{3} taken
b) Change with the size of the container
c) Remain constant so long as temperature is constant
d) Remain constant even if temperature is changed
4. Four species are listed below
I. HCO_{3}^{-}
II. $\mathrm{H}_{3} \mathrm{O}^{+}$
III. HSO_{4}^{-}
IV. $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
a) (iv) $<$ (ii) $<$ (iii) $<$ (i)
b) (ii) $<$ (iii) $<$ (i) $<$ (iv)
c) (i) < (iii) < (ii) < (iv)
d) (iii) $<$ (i) $<$ (iv) $<$ (ii)
5. $1 \mathrm{dm}^{3}$ solution containing 10^{5} moles each of Cl ions and CrO_{4}^{2} ions is treated with 10^{4} moles of silver nitrate. Which one of the following observation is made?

$$
\begin{array}{r}
{\left[K_{\mathrm{sp}} \mathrm{Ag}_{2} \mathrm{CrO}_{4}\right.} \\
{\left[\begin{array}{lll}
& 4 & \left.10^{12}\right] \\
{\left[K_{\mathrm{sp}} \mathrm{AgCl}\right.} & 1 & \left.10^{10}\right]
\end{array}\right.}
\end{array}
$$

a) Precipitation does not occur
b) Silver chromate gets precipitated first
c) Silver chloride gets precipitated first
d) Both silver chromate and silver chloride start precipitating simultaneously
6. Which is a basic salt?
a) PbS
b) PbCO_{3}
c) PbSO_{4}
d) $2 \mathrm{PbCO}_{3} \mathrm{~Pb}(\mathrm{OH})_{2}$
7. A reversible reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$ is carried out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be:
a) Doubled
b) Decreased
c) Halved
d) Same
8. In the system, $\mathrm{CaF}_{2}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)$, increasing the concentration of Ca^{2+} ions 4 times will cause the equilibrium concentration of F^{-}ions to change to :
a) $1 / 4$ of the initial value
b) $1 / 2$ of the initial value
c) 2 times of the initial value
d) None of the above
9. Hydrogen ion concentration in $\mathrm{mol} / \mathrm{L}$ in a solution of $\mathrm{pH}=5.4$ will be
a) 3.98×10^{8}
b) 3.88×10^{6}
c) 3.68×10^{-6}
d) 3.98×10^{-6}
10. The strongest conjugate base is
a) NO_{3}^{-}
b) Cl^{-}
c) SO_{4}^{2-}
d) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
11. In the reaction $\mathrm{I}_{2}+\mathrm{I}^{-}=\mathrm{I}_{3}^{-}$, the Lewis base is:
a) I_{2}
b) I^{-}
c) I_{3}^{-}
d) None of these
12. HI was heated in a sealed tube at $440^{\circ} \mathrm{C}$ till the equilibrium was reached, HI was found to be 22% decomposed. The equilibrium constant for dissociation is :
a) 0.282
b) 0.0796
c) 0.0199
d) 1.99
13. Which one is amphoteric oxide?
a) SO_{2}
b) $\mathrm{B}_{2} \mathrm{O}_{3}$
c) ZnO
d) $\mathrm{Na}_{2} \mathrm{O}$
14. For which reaction K_{p} is less than K_{c} ?
a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
b) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
c) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
d) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
15. For the reactions, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ if the initial concentration of $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and $x \mathrm{~mol} / \mathrm{L}$ of hydrogen is consumed at equilibrium, the correct expression of K_{p} is
a) $\frac{x^{2}}{(1-x)^{2}}$
b) $\frac{x^{2}}{(2+x)^{2}}$
c) $\frac{x^{2}}{1-x^{3}}$
d) $\frac{(1+x)^{2}}{(1-x)^{2}}$
16. In the given reaction,

$$
2 X(\mathrm{~g})+Y(\mathrm{~g}) \rightleftharpoons 2 Z(\mathrm{~g})+80 \text { kcal }
$$

Which combination of pressure and temperature will give the highest yield of Z at equilibrium?
a) 1000 atm and $200^{\circ} \mathrm{C}$
b) 500 atm and $500^{\circ} \mathrm{C}$
c) 1000 atm and $100^{\circ} \mathrm{C}$
d) 500 atm and $100^{\circ} \mathrm{C}$
17. Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH ?
a) BaCl_{2}
b) MgCl_{2}
c) CaCl_{2}
d) SrCl_{2}
18. Which is not correct for Lewis acids?
a) They contain at least one vacant orbital
b) They have a tendency to accept electrons
c) The smaller ion has greater acidic strength
d) In case of ions, the strength of acid is inversely proportional to its charge
19. The vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a certain temperature is 30 . What is the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at this temperature?
a) 46.5%
b) 36.2%
c) 53.3%
d) 64.2%
20. For which reaction $\mathrm{K}_{\mathrm{p}} \neq \mathrm{K}_{\mathrm{c}}$?
a) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
c) $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
d) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$

