

5

6

7

8

10

11

12

(c) For precipitation, ionic product > solubility product (K_{sp}) For, Ag₂CrO₄ ionic product = $[Ag^+]^2 [CrO_4^-]$ $=(10^{-4})^2(10^{-5})=10^{-13}$ $K_{\rm sp}$ of Ag₂CrO₄ = 4 × 10⁻¹² Here, $K_{sp} > IP$ This, no precipitate is obtained. For AgCl, ionic product = $[Ag^+][Cl^-] = [10^{-4}][10^{-5}]$ $= 10^{-9}$ $K_{\rm sp}({\rm AgCl}) = 1 \times 10^{-10}$ $IP > K_{sp}$ Here, So, precipitate will form. Thus, silver chloride gets precipitated first. (d) It is basic lead carbonate. (d) K_p or K_c are characteristic constants for a given reaction. (b) $K_c = [Ca^{2+}][F^{-}]^2;$ If $[Ca^{2+}] = 4 \times [Ca^{2+}];$ To have K_c constant [F⁻] should be $\frac{[F^-]}{2}$. (d) Strong conjugate base has a weak conjugate acid. Weakest conjugate acid is CH₃ COOH. (b) I[–] is electron pair donor. (c)

 $2HI \rightleftharpoons H_2 + I_2;$

	$K_c = \frac{\alpha^2}{4(1-\alpha)^2}$							
	4(1-u) Where a is degree of dissociation							
	$\frac{22}{2}$							
	Also, $\alpha = {100}$							
	$\therefore K_c = 0.0199$							
3	(c)							
	ZnO reacts with acid and alkalies both.							
4	(c)							
	$\Delta n = -1$ and $K_p = K_c \ge (RT)^{\Delta n}$							
5	(a)							
	$H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(l)$							
	Initial conc. 1 1 0 0							
	At equilibrium $(1-x)(1-x)$ x x							
	$p_{\rm CO} \cdot p_{\rm H_2O}$ $x \cdot x$ x^2							
	$\kappa_p = \frac{1}{p_{H_2} \cdot p_{CO_2}} = \frac{1}{(1-x)(1-x)} = \frac{1}{(1-x)^2}$							
6	(c)							
	In this equation, volume is decreasing and the reaction is exothermic. So. for the							
	highest yield of Z pressure should be high and temperature should be low.							
17	(a)							
	The pH of salt BaCl ₂ = $\frac{7}{7}$ whereas SrCl ₂ and CaCl ₂ \simeq 7 and MgCl ₂ < 7.							
8	(d)							
0	Lewis definition suggests that an acid must be capable of accepting lone pair in its vacant							
	orbital. Smaller ion shows more attraction towards lone pair of electron.							
9	(c)							
	Degree of dissociation $\alpha = \frac{D-d}{d}$							
	46 - 30							
	$=\frac{40-30}{20}$							
	= 0.533 or 53.3%							
0								
	$\Delta n = 0$ then, $K_n = K_c$							
	For $(d)\Lambda n = 1$							

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	Α	С	С	С	С	D	D	В	D	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	В	С	С	С	A	С	Α	D	С	D		