

Class : XIth Date : Subject : CHEMISTRY DPP No. : 4

Topic :- Equilibrium

1. A solution is called saturated if: a) Ionic concentration product < solubility product b) Ionic concentration product > solubility product c) Ionic concentration product \geq solubility product d) None of the above The auto protonation constant of H₂O is: 2. a) 1×10^{-14} b) 3.23×10^{-18} c) 1.8×10^{-18} d) 3.23×10^{-20} K_c for $m_1A + m_2B = n_1C + n_2D$ is given by: 3. a) $K_c = \frac{[A]^{m_1}[B]^{m_2}}{[C] \times [D]}$ b) $K_c = \frac{[A]^{n_1}[B]^{n_2}}{[C]^{m_1}[D]^{m_2}}$ c) $K_c = \frac{[C]^{n_1}[D]^{n_2}}{[A]^{m_1}[B]^{m_2}}$ d) $K_c = \frac{[C]^{m_1} \times [D]^{m_2}}{[A]^{n_1} \times [B]^{n_2}}$ 4. The pH of millimolar HCl is b)3 c) 2 a) 1 d)4 5. Partial pressure of A, B, C and D on the basis of gaseous system, $A + 2B \rightleftharpoons C + 3D$, are A = 0.20, B = 0.10, C = 0.30 and D = 0.50 atm. The numerical value of equilibrium constant is a) 3.75 b) 18.75 c) 17.85 d)15.87 6. Which equilibrium can be described as Lewis acid-base reaction but not Bronsted acid-base reaction? a) $H_2O + CH_3COOH \rightleftharpoons H_3O^+ + CH_3COO^$ b) $2NH_3 + H_2SO_4 \rightleftharpoons 2NH_4^+ + SO_4^{2-}$ c) $NH_3 + CH_3COOH \rightleftharpoons NH_4^+ + CH_3COO^$ d) $[Cu(H_2O)_4]^{2+}$ + 4NH₃ $\Rightarrow [Cu(NH_3)_4]^{2+}$ + 4H₂O SnCl₂ and HgCl₂ cannot co-exist in a solution because of: 7. a) Common ion effect b) Le – Chatelier's principle c) Conc. of Cl⁻ increases to precipitate both d) Redox change 8. The species which acts as a Lewis but not a Bronsted acid is b) 0^{2-} c) BF_3 a) $NH_2^$ d)0H⁻

- 9. What is the best description of the change that occurs when $Na_2O(s)$ is dissolved in water?
 - a) Oxidation number of sodium decreases
 - b) Oxide ion accepts sharing in a pair of electrons
 - c) Oxide ion donates a pair of electrons
 - d) Oxidation number of oxygen increases
- 10. pH of 0.005 M calcium acetate is $(pK_a of CH_3 COOH = 4.74)$
 - - a) 7.04 b)9.37 c) 9.26 d)8.2195
- 11. Relation between hydrolysis constant and dissociation constant are given. Which is the correct formula for MgCl₂?

a)
$$K_h = \frac{K_w}{K_a}$$
 b) $K_h = \frac{K_w}{K_b}$ c) $K_h = \frac{K_w}{K_a \times K_b}$ d) $K_w = \frac{K_h}{K_b}$

12. Theory's 'active mass' indicates that the rate of chemical reaction is directly proportional to the a) Equilibrium constant b) Volume of apparatus c) Properties of reactants

d) Concentration of reactants

d) $K_a.K_b$

13. In which of the following reactions, the value of K_p will be equal to K_c ? d) $2SO_2 + O_2 \rightleftharpoons 2SO_3$ b) $2NH_3 \rightleftharpoons N_2 + 3H_2$ a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ c) H₂ + I₂ ≓2HI

14. In the hydrolysis of a salt of weak acid and weak base, the hydrolysis constant K_h is equal to

a)
$$\frac{K_w}{K_b}$$
 b) $\frac{K_w}{K_a}$ c) $\frac{K_w}{K_a \cdot K_b}$

15. In which reaction ammonia acts as an acid? a) $NH_3 + HCl \rightarrow NH_4Cl$ b) $NH_3 + H^+ \rightarrow NH_4^+$

c)
$$NH_3 + Na \rightarrow NaNH_2 + \frac{1}{2}H_2$$

d) NH₃ cannot act as an acid

16. The compounds *A* and *B* are mixed in equimolar proportion to form the products,
$$A + B \rightleftharpoons C + D$$
. At equilibrium, one third of *A* and *B* are consumed. The equilibrium constant for the reaction is

17. 40% of a mixture of 0.2 mole of N_2 and 0.6 mole of H_2 react to give NH_3 according to the equation, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at constant temperature and pressure. Then the ratio of the final volume to the initial volume of gases is : a) 4 : 5 b) 5 : 4 c) 7 : 10 d)8:5

18. An aqueous solution contains a substance which yields
$$4 \times 10^{-3}$$
 mol litre⁻¹ ion of H₃O⁺. If log 2 = 0.3010, the pH of the solution is:
a) 1.5 b) 2.398 c) 3.0 d) 3.4

19. For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ration of concentration of salt and acid ($K_a = 10^{-5}$) should be:

	a) 1 :10	b) 10 :1	c) 100 :1	d)1:100
20.	The concentration of hydrogen ion $[H^+]$ and pH in 10 <i>M</i> HCl is:			
	a) 10 ¹ ,zero	b) 10 ¹ , — 1	c) 10 ² ,1	d) 10 ¹ ,1

