Class: XIth

Solutions

1
(c)

For a saturated solution product of ionic concentrations $\geq K_{s p}$.
2
(b)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$K_{\mathrm{S} . \mathrm{I}}=\frac{K_{w}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}=\frac{10^{-14}}{(55.6)^{2}}=3.23 \times 10^{-18}$
3
(c)

Follow the method to write K_{c} or K_{p} values. It is the ratio of concentrations of products with suitable powers to concentration of reactants e.g.,
$3 A(\mathrm{~g})+2 B(\mathrm{~g}) \rightleftharpoons 4 C(\mathrm{~g})+5 D(\mathrm{~g})$
$K_{c}=\frac{[C]^{4}[D]^{5}}{[A]^{3}[B]^{2}}$
$K_{p}=\frac{\left[P_{C}\right]^{4} \cdot\left[P_{D}\right]^{5}}{\left[P_{A}\right]^{3} \cdot\left[P_{B}\right]^{2}}$
4
(b)
(i)Millimolar $=10^{-3} \mathrm{M}$
(ii) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$ $\mathrm{pH}=-\log \left(10^{-3}\right)=3$.
5
(b)
$A+2 B \rightleftharpoons C+3 D$
$K_{c}=\frac{p_{C} p_{D}{ }^{3}}{p_{A} p_{B}{ }^{2}}=\frac{0.30 \times(0.50)^{3}}{0.20 \times(0.10)^{2}}$
$=18.75$
6

7
(d)

It involves gain and loss of electron pair (Lewis concept).
(d)
$\mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2} \rightarrow \mathrm{SnCl}_{4}+\underset{\text { (white ppt.) }}{\mathrm{Hg}_{2} \mathrm{Cl}_{2}}$
$\mathrm{SnCl}_{2}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{4}+\underset{\text { (Grey ppt.) }}{\mathrm{Hg}_{2}}$
(c)
BF_{3} can accept a pair of electrons, but it cannot give H^{+}ions in the aqueous solution, hence BF_{3} acts as Lewis acid but not as a Bronsted acid
(c)

	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$	
	\uparrow	\uparrow
Oxidation number of Na	+1	+1
Oxygen	-2	-2

No change in oxidation number, so (a) and (d) are not true.
(b) is also not true.

Oxide ion donates a pair of electrons, thus changes to OH^{-}
(d)

$$
\begin{aligned}
& \mathrm{pH}=\frac{1}{2} \mathrm{p} K_{w}+\frac{1}{2} \log C+\frac{1}{2} \mathrm{p} K_{a} \\
&=\frac{14}{2}+\frac{1}{2} \log \left(5 \times 10^{-3}\right)+\frac{1}{2} \times 4.74 \\
&=7+\frac{1}{2}[0.6990-3]+2.3 \\
& \mathrm{pH}=8.2195 \\
& \text { (b) }
\end{aligned}
$$

For a salt of weak base and strong acid like MgCl_{2} the relation is as

$$
K_{h}=\frac{K_{w}}{K_{b}}
$$

(d)

Theory of active mass indicates that the rate of chemical reaction is directly proportional to the concentration of reactants
(c)

If $n_{P}=n_{R}$, then $K_{p}=K_{c}$
where, $n_{p}=$ number of moles of products
$n_{R}=$ number of moles of reactants
(c)
$K_{h}=\frac{K_{w}}{K_{a} \times K_{b}}$
(c)
$\mathrm{N}-\mathrm{H}$ bond behaves as an acid.
(c)

Initial $\quad x$ mol $\quad x$ mol
At equilibrium $x-\frac{x}{3}=\frac{2 x}{3} \quad \frac{2 x}{3} \quad \frac{x}{3} \quad \frac{x}{3}$
Hence,

$$
K_{c}=\frac{[C][D]}{[A][B]}=\frac{\left(\frac{x}{3 V}\right)\left(\frac{x}{3 V}\right)}{\left(\frac{2 x}{3 V}\right)\left(\frac{2 x}{3 V}\right)}=\frac{1}{4}=0.25
$$

(a)

\[

\]

Initially at eq.
Total mixture is $0.8 ; 40 \%$ of it reacts, i.e., $\frac{0.8 \times 40}{100}$ reacts to give $\frac{0.8 \times 40}{100} \times \frac{1}{2}$ mole of NH_{3} or NH_{3} formed is 0.16 mole
Or
\therefore

$$
\begin{aligned}
2 \mathrm{a} & =0.16 \\
\mathrm{a} & =0.08
\end{aligned}
$$

\therefore initial mole $=0.8$
Final mole $=(0.2-0.08)+(0.6-0.24)+0.16$

$$
=0.12+0.36+0.16=0.64
$$

\therefore Ratio of final to initial mole $=\frac{0.64}{0.8}=0.8=\frac{4}{5}$
(b)
$\left[\mathrm{H}^{+}\right]=4 \times 10^{-3} \mathrm{M}$
$\therefore \mathrm{pH}=-\log 4 \times 10^{-3}=2.398$.
(b)

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
& =5+\log \frac{10}{1} \mathrm{if} \frac{[\text { Salt }]}{[\text { Acid }]}=10: 1, \text { Then } \\
\mathrm{pH} & =6
\end{aligned}
$$

(a)

10 M HCl will give $\left[\mathrm{H}^{+}\right]=10^{1} ; \mathrm{pH}$ of such solution $=0$.

| ANSWER-KEY | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | \mathbf{C} | \mathbf{B} | \mathbf{C} | \mathbf{B} | \mathbf{B} | \mathbf{D} | \mathbf{D} | \mathbf{C} | \mathbf{C} | \mathbf{D} |
| | | | | | | | | | | |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | \mathbf{B} | D | C | C | C | C | A | B | B | A |
| | | | | | | | | | | |

