

 BF_3 can accept a pair of electrons, but it cannot give H^+ ions in the aqueous solution, hence BF_3 acts as Lewis acid but not as a Bronsted acid

 $Na_2O + H_2O \rightarrow 2NaOH$

9

(c)

(d)

(b)

(c)

(c)

(c)

 $\uparrow \qquad \uparrow$ Oxidation number of Na +1 +1Oxygen -2 -2 -2No change in oxidation number, so (a) and (d) are not true. (b) is also not true.

$$\Theta$$
 $+$ H $- 0$ $+$ H $- 2.0$ H

Oxide ion donates a pair of electrons, thus changes to OH⁻

10

$$pH = \frac{1}{2}pK_w + \frac{1}{2}\log C + \frac{1}{2}pK_a$$

= $\frac{14}{2} + \frac{1}{2}\log(5 \times 10^{-3}) + \frac{1}{2} \times 4.74$
= $7 + \frac{1}{2}[0.6990 - 3] + 2.3$
pH = 8.2195

11

For a salt of weak base and strong acid like MgCl₂ the relation is as

 $K_h = \frac{K_w}{K_b}$

12 **(d)**

Theory of active mass indicates that the rate of chemical reaction is directly proportional to the concentration of reactants

13

If $n_P = n_R$, then $K_p = K_c$ where, $n_p =$ number of moles of products $n_R =$ number of moles of reactants (c)

14

$$K_h = \frac{K_w}{K_a \times K_b}$$

15

N—H bond behaves as an acid.

16

 $A + B \rightleftharpoons C + D$ Initial x mol x mol At equilibrium $x - \frac{x}{3} = \frac{2x}{3} \quad \frac{2x}{3} \quad \frac{x}{3} \quad \frac{x}{3}$ Hence,

$$K_{c} = \frac{[C][D]}{[A][B]} = \frac{\binom{x}{3V}\binom{x}{3V}}{\binom{2x}{3V}\binom{2x}{3V}} = \frac{1}{4} = 0.25$$

17

18

19

20

(a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ $\begin{array}{ccc} 0.2 & 0.6 & 0 \\ (0.2-a) & (0.6-3a) & 2a \end{array}$ Initially at eq. Total mixture is 0.8; 40% of it reacts, i.e., $\frac{0.8 \times 40}{100}$ reacts to give $\frac{0.8 \times 40}{100} \times \frac{1}{2}$ mole of NH₃ or NH_3 formed is 0.16 mole 0r 2a = 0.16:. a = 0.08 \therefore initial mole = 0.8 Final mole = (0.2 - 0.08) + (0.6 - 0.24) + 0.16= 0.12 + 0.36 + 0.16 = 0.64: Ratio of final to initial mole = $\frac{0.64}{0.8} = 0.8 = \frac{4}{5}$ **(b)** $[H^+] = 4 \times 10^{-3} M$ \therefore pH = $-\log 4 \times 10^{-3} = 2.398$. **(b)** $pH = pK_a + \log \frac{[Salt]}{[Acid]}$ $= 5 + \log \frac{10}{1} \operatorname{if}_{[\text{Acid}]}^{[\text{Salt}]} = 10:1, \text{ Then},$ pH = 6.(a) 10 *M* HCl will give $[H^+] = 10^1$; pH of such solution = 0.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	С	В	В	D	D	С	С	D
Q .	11	12	13	14	15	16	17	18	19	20
A.	B	D	С	С	С	С	A	В	B	Α