

Subject : CHEMISTRY DPP No. : 3 Class: XIth Date:

Topic :- Equilibrium							
1.	Under what conditions of temperature and pressure, the formation of atomic hydrogen from molecular hydrogen will be favoured most?						
	a) High temperature and high pressure		b) High temperature and low pressure				
	c) Low temperature and low pressure		d) Low temperature and high pressure				
2.	Mohr's salt is a:						
	a) Normal salt	b) Acid salt	c) Basic salt	d) Double salt			
3.	pH of 0.05 <i>M</i> Mg(OH) ₂	is:					
	a) 13	b) 10	c) 1	d) Zero			
4.	In which of the following reactions, the concentration of product is higher than the						
	concentration of reactant at equilibrium? $(K = \text{equilibrium constant})$						
	a) $A \rightleftharpoons B; K = 0.001$	b) $M \rightleftharpoons N$; $K = 10$	c) $X \rightleftharpoons Y; K = 0.005$	d) $R \rightleftharpoons P; K = 0.01$			
5.	The values of dissociation constant of bases are given below. Which is the weakest						
	base?						
	a) 1.8×10^{-5}	b) 4.8×10^{-10}	c) 7.2×10^{-11}	d) 7.07×10^{-7}			
6.	The dissociation equilibrium of a gas AB ₂ can be represented as:						
	$2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$						
	The degree of dissociation is x' and is small compared to 1. The expression relating the degree of dissociation x with equilibrium constant x_p and total pressure y is :						
	a) $(2K_p/P)^{1/3}$	b) $(2K_p/P)^{1/2}$	c) (K_p/P)	d) $(2K_p/P)$			
7.	In which one of the following gaseous equilibria, K_p is less than K_c ?						
	a) $N_2O_4 \rightleftharpoons 2NO_2$	b) $2SO_2 + O_2 \rightleftharpoons 2SO_3$	c) $2HI \rightleftharpoons H_2 + I_2$	d) $N_2 + O_2 \rightleftharpoons 2NO$			
8.	$K_{\rm sp}$ for ${\rm Cr}({\rm OH})_3$ is 2.7×10^{-31} . What is its solubility in mol/L?						
	a) 1×10^{-8}	b) 8×10^{-8}	c) 1.1×10^{-8}	d) 0.18×10^{-8}			
9.	N_2O_4 is dissociated to 33% and 40% at total pressure P_1 and P_2 atm respectively. Then the						
	ratio P_1/P_2 is:						
	a) 7/4	b) 7/3	c) 8/3	d)8/5			
10.	In the reactions, $A + 2B \rightleftharpoons 2C$, if 2 moles of A, 3.0 moles of B and 2.0 moles of C are placed in a 2						
	L flask and the equilibrium concentration of C is 0.5 mol/L, the equilibrium constant (K_c) for						
	the reactions is						
	a) 0.21	b) 0.50	c) 0.75	d) 0.025			
11.	The pH value of 1/10	e pH value of 1/1000 N KOH solution is					
	a) 3	b) 10^{-11}	c) 2	d) 11			

12.	The pH of tears coming out of a person's eye is:						
	a) 7.4	b) 6.4	c) 7.0	d) 2.36			
13.	The solubility of CaF ₂ is 2×10^{-4} mol/L. Its solubility product ($K_{\rm sp}$) is						
	a) 2.0×10^{-4}	b) 4.0×10^{-3}	c) 8.0×10^{-12}	d) 3.2×10^{-11}			
14.	The solubility product of a salt having general formula MX_2 in water is 4×10^{-12} . The						
	concentration of M^{2+} ions in the aqueous solution of the salt is						
	a) 2.0×10^{-6} M	b) 1.0×10^{-4} M	•	•			
15.	The solubility product of barium sulphate is 1.5×10^{-9} at 18° C. Its solubility						
	18°C is						
	a) 1.5×10^{-9}	b) 1.5×10^{-5}	c) 3.9×10^{-9}	d) 3.9×10^{-5}			
16.	The strongest Bronsted base is						
	a) ClO_3^-	b) ClO ₂	c) ClO ₄	d) ClO ⁻			
17.	The reaction quotient (Q) at equilibrium is:						
	a) = 1	b) = K	c) $> K$	d) < K			
18.	The concentration of oxalic acid is $'x'$ mol L ⁻¹ . 40 mL. of this solution reacts with 10						
	of 0.05 M acidified KMnO ₄ . What is the pH of $'x'$ M oxolic acid solution?						
	(Assume that oxalic acid dissociates completely)						
	a) 1.3	b) 1.699	c) 1	d) 2			
19.	Metal ions like Ag ⁺ , (Cu ²⁺ etc. act as					
	a) Bronsted acids	b) Bronsted bases	c) Lewis acids	d) Lewis bases			
20.	The pK_a of acetylsalicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is ab						
	2 — 3 and the pH in the small intestine is about 8. Aspirin will be a) Unionised in the small intestine and in the stomach b) Completely ionised in the small intestine and in the stomach c) Ionised in the stomach and almost unionised in the small intestine						
	d) Ionised in the small intestine and almost unionised in the stomach						