

(s) (3s)

$$K_{sp} = s \times (3s)^{3}$$

 $= 27s^{4}$
 $2.7 \times 10^{-31} = 27s^{4}$
 \therefore $s = \sqrt[4]{\frac{K_{sp}}{27}} = \sqrt[4]{\frac{2.7 \times 10^{-31}}{27}}$
 $= \sqrt[4]{10^{-32}}$
 $= 10^{-8} \text{ mol/L}$
(d)
 $N_{2}O_{4} \neq 2NO_{2}$
 $\frac{1}{1-\alpha} \qquad 0$
 $X_{p} = \frac{(n_{NO_{2}})^{2}}{n_{N_{2}O_{4}}} \times \left[\frac{P}{2\pi}\right]^{1}$
For 33% dissociation: $K_{p} = \frac{(2 \times 0.33)^{2}}{0.67} \times \left[\frac{P}{1.33}\right]$
For 40% dissociation: $K_{p} = \frac{(2 \times 0.40)^{2}}{0.60} \times \left[\frac{P}{1.40}\right]$
 $\therefore \frac{P_{1}}{P_{2}} = 1.56 \approx 1.60 = \frac{8}{5}$
(a)
 $A + 2B \approx 2C$
 $2 \quad 3 \quad 2 \quad \text{initial moles}$
 $(2 - 0.5)(3 - 0.5)(2 \times 0.5)$ at equilibrium
Molar concentration of $A = \frac{1.5}{2}$
Molar concentration of $B = \frac{2.5}{2}$
Molar concentration of $C = \frac{1}{2}$
 $K = \frac{[C]^{2}}{[A][B]^{2}} = \frac{1 \times 1 \times 2 \times 2 \times 2 \times 2 \times 2}{1.5 \times 2.5 \times 2.5} = \frac{2}{1.5 \times 2.5 \times 2.5} = 0.21$
(d)
In $\frac{N}{1000}$ KOH solution, $[OH^{-}] = 10^{-3}$ M
 $pOH = -\log [OH^{-}] = -\log [10^{-3}]$
 $= +3\log 10 = 3$
 $pH + pOH = 14$
 $pH = 14 - pOH$

10

11

$$= 14 - 3$$

= 11

12 **(a)**

(b)

Tears are alkaline in nature.

14

$$MX_{2} = M^{2+} + 2X^{-}$$

$$s \qquad 2s$$

$$K_{sp} = (2s)^{2}(s) = 4s^{3}$$

$$\Rightarrow s = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 1.0 \times 10^{-4} M$$
(d)
Let colubility of PeCO = mod L⁻¹

15

Let solubility of BaSO₄ = mol L⁻¹
BaSO₄
$$\Rightarrow$$
Ba²⁺ +SO₄²⁻
 x x x
 \therefore Ions at equilibrium
 $K_{sp} = [Ba^{2+}][SO_4^{2-}]$
 $= x \times x$
 x^2
Given, $K_{sp} = 1.5 \times 10^{-9}$
 $(1.5 \times 10^{-9}) = x^2$
or $\sqrt{1.5 \times 10^{-9}} = x$
 $x = 3.9 \times 10^{-5} \text{ mol/L}$

16

(d)

Strongest Bronsted base is that which has weakest conjugate acid.

Base	Conjugate				
	acid (base				
	+ H ⁺)				
ClO ⁻	HClO				
ClO_2^-	HClO ₂				
ClO_3^-	HClO ₃				
ClO_4^-	HClO ₄				

• HClO is weak conjugate acid.

 \therefore ClO⁻ is strongest Bronsted base.

17 **(b)**

At equilibrium $Q = K_c$ (or $Q = K_p$)

18 **(a)**

Oxalic acid = $x \mod/L$ Oxalic acid KMnO₄

$$M_1 V_1 = M_2 V_2$$

40 mL × x = 16 mL × 0.05
$$x = \frac{16 \times 0.05}{40} = \frac{1}{50}$$
$$x = \frac{1}{50} M$$

Now, convert molarity into normality $N \times eq.wt = M \times mol.wt.of$ oxalic acid

$$N \times 45 = \frac{1}{50} \times 90$$
$$N = \frac{1}{25}$$

This normality represents the hydrogen ion concentration.

So,
$$[H^+] = \frac{1}{25}$$

 $pH = \log \frac{1}{[H^+]}$
 $= \log 25 = 1.3$

19

(c)

Simple cations such as Ag⁺, Cu²⁺,Fe³⁺ etc. can accept pairs of electrons and hence are Lewis acids.

20 (d)

Aspirin is a weak acid. Due to common ion effect, it is unionised in acid medium but completely ionised in alkaline medium

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	В	D	Α	В	С	Α	В	Α	D	Α	
Q .	11	12	13	14	15	16	17	18	19	20	
A.	D	Α	D	В	D	D	B	Α	С	D	