

Class : XIth Date : Subject : CHEMISTRY DPP No. : 2

Topic :- Equilibrium

1.	A solution of $FeCl_3$ in water acts as acidic due to:						
	a) Acidic impurities	b) Ionisation	c) Hydrolysis of Fe ³⁺	d) Dissociation			
2.	The concept that an acid is a proton donor and a base is a proton acceptor was introduced by						
	a) Arrhenius	b) Bronsted-Lowry	c) Lewis	d) Faraday			
3.	Which is decreasing order of strength of bases?						
	$\overline{O}H,\overline{N}H_2,HC \equiv C^- \text{ and } CH_3CH_2^-$						
	a) $H_3CCH_2^- > NH_2^- > HC \equiv C^- > OH^-$		b) $\mathrm{HC} \equiv \mathrm{C}^{-} > C\mathrm{H}_{3}\mathrm{CH}_{2}^{-} > N\mathrm{H}_{2}^{-} > O\mathrm{H}^{-}$				
	c) $OH^- > NH_2^- > CH$	$\equiv C^- > H_3CCH_2^-$	d) NH ₂ ⁻ > HC \equiv C ⁻ >	$OH^- > H_3CCH_2^-$			
4.	The strength of an acid dep <mark>ends on its tende</mark> ncy to						
	a) Accept protons	b) <mark>Donat</mark> e protons	c <mark>) Acc</mark> ept electrons	d) Donate electrons			
5.	The following reactions are <mark>know</mark> n to o <mark>ccur i</mark> n th <mark>e body,</mark>						
	$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + \frac{HCO_3}{2}$						
	If CO ₂ escapes from th	e sys <mark>tem, then:</mark>					
	a) pH will decrease						
		entrat <mark>ion w</mark> ill diminish					
	c) H ₂ CO ₃ concentration will be unaltered						
	d) The forward reaction will be promoted						
6.	The common ion effect is shown by which of the following sets of solutions?						
	a) $BaCl_2 + BaNO_3$	b) NaCl + HCl	c) $NH_4OH + NH_4Cl$	d) None of these			
7.	In the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equilibrium pressure is 12 atm. If 50% of CC						
	reacts, K_p for the chan						
	a) 12 atm	b)16 atm	c) 20 atm	d)6 atm			
8.	For a given solution pH = 6.9 at 60°C, where $K_w = 10^{-12}$. The solution is:						
	a) Acidic	b) Basic	c) Neutral	d)Unpredictable			
9.				$_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$. At			
	equilibrium the vessel contains 0.1 mole of PCl_5 , 0.20 mole of PCl_3 and 0.20 mole of Cl_2 . The						
	equilibrium constant o	of the reaction is :					
	a) 0.02	b)0.05	c) 0.04	d)0.025			
10.	One mole of ethyl alcohol was treated with one mole of acetic acid at 25° C. 2/3 of the acid						
	changes into ester at equilibrium. The equilibrium constant for the reaction will be:						
	a) 1	b)2	c) 3	d)4			

11.	9.2 g of $N_2O_4(g)$ is taken in a closed 1 L vessel and heated till the following equilibrium i reached $N_2O_4(g) \rightleftharpoons 2NO_2(g)$						
		$_{2}O_{4}(g)$ is dissociated W	hat is the equilibrium co	1 on stant (in moll ⁻¹)?			
	At equilibrium, $50\% N_2O_4(g)$ is dissociated. What is the equilibrium constant (in molL ⁻¹)? (Molecular weight of N ₂ O ₄ = 92)						
	a) 0.1	b) 0.2	c) 0.3	d)0.4			
12.	Assuming complete dissociation which of the following aqueous solutions will have the same						
	pH value?						
	(i)100 mL of 0.01 M H(
	(ii)100 mL of 0.01 MH ₂						
	(iii) 50 mL of 0.01 M HCl (iv) Mixture of 50 mL of 0.02 M H_2SO_4 and 50 mL of 0.02 M NaOH						
	a) (i), (ii)	b) (i), (iii)	c) (ii), (iv)	d)(i),(iv)			
13.				0.2 atm respectively. K_p			
	for the reaction $2CO_2 \rightleftharpoons 2CO + O_2$, is						
	a) 0.089	b) 0.098	c) 0.189	d)0.198			
14.	The pK_a of weak acid H	I _A is <mark>4.5. The pOH of</mark> an	aqueous buffer solution	of HA in which 50% of			
	the acid is ionised:						
1 5	a) 7.0	b)4.5	c) 2.5	d)9.5			
15.	An amphoteric buffer solution in which conc. of H ⁺ and HX is same. The value of K_a of HX is 10^{-8} , then pH of buffer solution is						
	-			J) 1 4			
16.	a) 3	b) 8 2 R x2C the equilibri	c) 10 ium constant <i>K_c</i> is give	d) 14			
10.				-			
	a) $\frac{[3A] \times [2B]}{[C]}$	b) $\frac{[A]^3 \times [B]}{[C]}$	c) $\frac{[C]^2}{[A]^3 \times [B]^2}$	d) $\frac{[C]}{[3A][2B]}$			
17.	Which reaction is not affected by change in pressure?						
	a) $H_2 + I_2 \rightleftharpoons 2HI$		b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$				
10	c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$	d)2C + 0₂⇒2C0					
18.	Three reactions invo						
		.,	$0 \rightarrow H_3 0^+ + H_2 P 0_4^-$				
	(ii)H ₂ PO ₄ ⁻ + H ₂ O→HPO ₄ ²⁻ + H ₃ O ⁺ (iii)H ₂ PO ₄ ⁻ + OH ⁻ →H ₃ PO ₄ + O ²⁻						
	In which of the above						
19.	a) (ii) only	b) (i) and (ii)	c) (iii) only	d) (i) only			
19.	pH for the solution of salt undergoing anionic hydrolysis (say CH_3COONa) is given by:						
	a) pH = $\frac{1}{2}$ [pK _w + pK _a + log c]						
	$b) pH = \frac{1}{2} [pK_w + pK_a - \log c]$						
	1						
	c) $pH = \frac{1}{2} [pK_w + pK_b - \log c]$						

d) None of the above

20. For the reactions, A + B + Q ⇒C + D, if the temperature is increased then concentration of the products will
a) Increase
b) Decrease
c) Remains the same
d) Become zero

