Class: XIth
Subject : CHEMISTRY
Date:
DPP No. : 2

Topic :- Equilibrium

1. A solution of FeCl_{3} in water acts as acidic due to:
a) Acidic impurities
b) Ionisation
c) Hydrolysis of Fe^{3+}
d) Dissociation
2. The concept that an acid is a proton donor and a base is a proton acceptor was introduced by:
a) Arrhenius
b) Bronsted-Lowry
c) Lewis
d) Faraday
3. Which is decreasing order of strength of bases?

$$
\overline{\mathrm{O}} \mathrm{H}, \overline{\mathrm{~N}} \mathrm{H}_{2}, \mathrm{HC} \equiv \mathrm{C}^{-} \text {and } \mathrm{CH}_{3} \mathrm{CH}_{2}^{-}
$$

a) $\mathrm{H}_{3} \mathrm{CCH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
b) $\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{OH}^{-}$
c) $\mathrm{OH}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}>\mathrm{H}_{3} \mathrm{CCH}_{2}^{-}$
d) $\mathrm{NH}_{2}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}>\mathrm{H}_{3} \mathrm{CCH}_{2}^{-}$
4. The strength of an acid depends on its tendency to
a) Accept protons
b) Donate protons
c) Accept electrons
d) Donate electrons
5. The following reactions are known to occur in the body,
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
If CO_{2} escapes from the system, then:
a) pH will decrease
b) Hydrogen ion concentration will diminish
c) $\mathrm{H}_{2} \mathrm{CO}_{3}$ concentration will be unaltered
d) The forward reaction will be promoted
6. The common ion effect is shown by which of the following sets of solutions?
a) $\mathrm{BaCl}_{2}+\mathrm{BaNO}_{3}$
b) $\mathrm{NaCl}+\mathrm{HCl}$
c) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
d) None of these
7. In the reaction, $\mathrm{C}(s)+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, the equilibrium pressure is 12 atm . If 50% of CO_{2} reacts, K_{p} for the change is :
a) 12 atm
b) 16 atm
c) 20 atm
d) 6 atm
8. For a given solution $\mathrm{pH}=6.9$ at $60^{\circ} \mathrm{C}$, where $K_{w}=10^{-12}$. The solution is:
a) Acidic
b) Basic
c) Neutral
d) Unpredictable
9. A quantity of PCl_{5} was heated in a 10 litre vessel at $250^{\circ} \mathrm{C}$ to show $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. At equilibrium the vessel contains 0.1 mole of $\mathrm{PCl}_{5}, 0.20$ mole of PCl_{3} and 0.20 mole of Cl_{2}. The equilibrium constant of the reaction is :
a) 0.02
b) 0.05
c) 0.04
d) 0.025
10. One mole of ethyl alcohol was treated with one mole of acetic acid at $25^{\circ} \mathrm{C} .2 / 3$ of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be:
a) 1
b) 2
c) 3
d) 4
11. 9.2 g of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is taken in a closed 1 L vessel and heated till the following equilibrium is reached
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
At equilibrium, $50 \% \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is dissociated. What is the equilibrium constant (in molL^{-1})? (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$)
a) 0.1
b) 0.2
c) 0.3
d) 0.4
12. Assuming complete dissociation which of the following aqueous solutions will have the same pH value?
(i) 100 mL of 0.01 M HCl
(ii) 100 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$
(iii) 50 mL of 0.01 M HCl
(iv)Mixture of 50 mL of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 50 mL of 0.02 M NaOH
a) (i), (ii)
b) (i), (iii)
c) (ii), (iv)
d) (i), (iv)
13. At 3000 K , the equilibrium pressure of $\mathrm{CO}_{2}, \mathrm{CO}$ and O_{2} are $0.6,0.4$ and 0.2 atm respectively. K_{p} for the reaction $2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2}$, is
a) 0.089
b) 0.098
c) 0.189
d) 0.198
14. The $\mathrm{p} K_{a}$ of weak acid H_{A} is 4.5 . The pOH of an aqueous buffer solution of $\mathrm{H} A$ in which 50% of the acid is ionised:
a) 7.0
b) 4.5
c) 2.5
d) 9.5
15. An amphoteric buffer solution in which conc. of H^{+}and $\mathrm{H} X$ is same. The value of K_{a} of HX is 10^{-8}, then pH of buffer solution is
a) 3
b) 8
c) 10
d) 14
16. In the reaction, $3 A+2 B \rightarrow 2 C$, the equilibrium constant K_{c} is given by
a) $\frac{[3 A] \times[2 B]}{[C]}$
b) $\frac{[A]^{3} \times[B]}{[C]}$
c) $\frac{[C]^{2}}{[A]^{3} \times[B]^{2}}$
d) $\frac{[C]}{[3 A][2 B]}$
17. Which reaction is not affected by change in pressure?
a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
c) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
d) $2 \mathrm{C}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{CO}$
18. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below

$$
\begin{aligned}
& \text { (i) } \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\
& \text {(ii) } \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \text {(iii) } \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2-}
\end{aligned}
$$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
a) (ii) only
b) (i)and (ii)
c) (iii) only
d) (i) only
19. pH for the solution of salt undergoing anionic hydrolysis (say $\mathrm{CH}_{3} \mathrm{COONa}$) is given by:
a) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}+\log c\right]$
b) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\mathrm{p} K_{a}-\log c\right]$
c) $\mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\mathrm{p} K_{b}-\log c\right]$
d) None of the above
20. For the reactions, $A+B+Q \rightleftharpoons C+D$, if the temperature is increased then concentration of the products will
a) Increase
b) Decrease
c) Remains the same
d) Become zero

