Class: XIth
Date :

1
(c)
$\mathrm{Fe}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}^{+}$.
(b)

This is Bronsted-Lowry concept of acid base.
(a)

The conjugate acids of $\overline{\mathrm{O}} \mathrm{H}, \overline{\mathrm{N}} \mathrm{H}_{2}, \mathrm{HC} \equiv \mathrm{C}^{-}$and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$are $>\mathrm{HC} \equiv \mathrm{CH}>\mathrm{NH}_{3}>\mathrm{CH}_{3} \mathrm{CH}_{3}$ strength is

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>H C \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}
$$

(b)
(c) other a weak electrolyte.
(b)
$\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{HC}=\mathrm{CH}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{3}$ respectively. Their acidic strength is as HOH

A strong acid has a weak conjugate base, hence the decreasing order of basic

On removal of CO_{2} (one of the reaction), reaction will proceed in backward direction.

Common ion effect includes two necessary points; one presence of common ion and the

$$
\mathrm{C}(s)+\mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

Gaseous mole before - 10
dissociation
Gaseous mole after - $\quad\left(1-\frac{50}{100}\right)\left(\frac{2 \times 50}{100}\right)$
dissociation

1. $\quad 0.5 \quad 1$
\therefore Total mole $=1.5$ and $\Delta n=1$
Total pressure given at equilibrium $=12 \mathrm{~atm}$
$K_{p}=\frac{\left(n_{\mathrm{CO}}\right)^{2}}{\left(n_{\mathrm{CO}_{2}}\right)} \times\left[\frac{P}{\sum n}\right]^{\Delta n}=\frac{(1)^{2}}{0.5} \times\left(\frac{12}{1.5}\right)^{1}$
$K_{p}=\frac{12}{1.5 \times 0.5}=16 \mathrm{~atm}$
(b)

If $K_{w}=10^{-12}$, then $\left[\mathrm{H}^{+}\right]$for neutral scale $=10^{-6}$ or $\mathrm{pH}=6$; thus, pH 6.9 refers for alkaline nature.
(c)
$K_{c}=\frac{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{PCl}_{3}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\frac{0.2}{10} \times \frac{0.2}{10}}{\frac{0.1}{10}}=0.04$
(d)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{lccc}
1 & 1 & 0 & 0 \\
(1-2 / 3) & \begin{array}{c}
1 \\
(1-2 / 3)
\end{array} & 2 / 3 & 2 / 3 \\
\therefore & K_{C}=\frac{\frac{2}{3} \times \frac{2}{3}}{\frac{1}{3} \times \frac{1}{3}}=4
\end{array}
$$

(b)
$K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{4 \times(0.05)^{2}}{0.05}=4 \times 0.05=\mathbf{0 . 2}$
(d)

Millieq. of $0.01 \mathrm{M} \mathrm{HCl}=\frac{0.01 \times 100}{1000}=1 \times 10^{-3}$
$\therefore \mathrm{pH}=3$
Millieq. of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{0.04 \times 50}{1000}=2 \times 10^{-3}$
Millieq. of $0.02 \mathrm{M} \mathrm{NaOH}=\frac{0.02 \times 50}{1000}=1 \times 10^{-3}$
Left $\left[\mathrm{H}^{+}\right]=2 \times 10^{-3}-1 \times 10^{-3} ; \therefore \mathrm{pH}=3$
(a)
(d)

$$
\mathrm{pH}=4.5+\log \frac{\text { [Conjugate base] }}{[\text { Acid }]}
$$

$\because[$ Salt $]=[$ Acid $]$, since $\left[A^{-}\right]=\left[\mathrm{H}_{A}\right]$
$\therefore \mathrm{pH}=4.5 \therefore \mathrm{pOH}=9.5$
(b)

We know that,

$$
\mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { salt }]}{[\text { acid }]}
$$

or $\mathrm{pH}=-\log 10^{-8}+\log \frac{1}{1}$
$(\because[$ salt $]=[$ acid $])$
or $\mathrm{pH}=8$
(c)
$3 A+2 B \rightarrow 2 C$

$$
\begin{aligned}
K_{C} & =\frac{\text { concentration of products }}{\text { concnetration of reactants }} \\
& =\frac{[C]^{2}}{[A]^{3} \times[B]^{2}}
\end{aligned}
$$

(a)

Only in reaction (ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, gives H^{+}to $\mathrm{H}_{2} \mathrm{O}$, thus behaves as an acid.
(a)
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=c \cdot h=c \sqrt{\frac{K_{H}}{c}}=\sqrt{K_{H} \cdot c}=\sqrt{\frac{K_{w}}{K_{a}} \cdot c}$
or $\quad-\log \mathrm{OH}=-\frac{1}{2}\left[\log K_{w}+\log c-\log K_{a}\right]$
or $\quad \mathrm{pOH}=\frac{1}{2}\left[\mathrm{p} K_{w}-\log c-\mathrm{p} K_{a}\right]$
Now, $\mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{w}$
$\therefore \quad \mathrm{pH}=\frac{1}{2}\left[\mathrm{p} K_{w}+\log c+\mathrm{p} K_{a}\right]$.
(a)
$\underbrace{A+B}_{2}+Q \rightleftharpoons \underbrace{C+D}_{2}$
The reaction is endothermic so, on increase temperature concentration of product will increase

| ANSWER-KEY | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | \mathbf{C} | \mathbf{B} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{C} | \mathbf{B} | \mathbf{B} | \mathbf{C} | \mathbf{D} |
| | | | | | | | | | | |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | \mathbf{B} | \mathbf{D} | A | D | B | C | A | A | A | A |
| | | | | | | | | | | |

