Class : XIth
Subject : CHEMISTRY
Date :
DPP No. : 10

Topic :- Equilibrium

1. Which of the following will not function as a buffer solution?
(i) NaCl and NaOH
(ii) NaOH and $\mathrm{NH}_{4} \mathrm{OH}$
(iii) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ and HCl
(iv) Borax and boric acid
a) (i), (ii), (iii)
b) (ii), (iii), (iv)
c) (i), (iii), (iv)
d) (i), (ii), (iii), (iv)
2. $\quad K_{S P}$ of salts $A B, A B_{2}$ and $A_{3} B$ are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively at temperature T. The solubility order of these salts in water at temperature T (in mol litre ${ }^{-1}$) is:
a) $\mathrm{AB}>A \mathrm{~B}_{2}>\mathrm{A}_{3} \mathrm{~B}$
b) $\mathrm{A}_{3} \mathrm{~B}>A \mathrm{~B}_{2}>A B$
c) $\mathrm{AB}_{2}>\mathrm{A}_{3} \mathrm{~B}>A B$
d) $\mathrm{AB}>\mathrm{A}_{3} \mathrm{~B}>A \mathrm{~B}_{2}$
3. Which does not act as Bronsted acid?
a) NH_{4}^{+}
b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
c) HCO_{3}^{-}
d) HSO_{3}^{-}
4. Which of the following solutions will have $\mathrm{pH}=9$ at 298 K ?
a) $1 \times 10^{-9} \mathrm{M} \mathrm{HCl}$ solution
b) $1 \times 10^{-5} \mathrm{M} \mathrm{NaOH}$ solution
c) $1 \times 10^{-9} \mathrm{M} \mathrm{KOH}$ solution
d) Both (a) and (b)
5. Acidosis is diagnosed when blood pH :
a) Falls below 7.35
b) Rises above 7.45
c) Both (a) and (b)
d) None of these
6. Which statement is false? (Assume complete dissociation in each case)
a) If 2.0 L of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains 0.1 mole, then pH of the solution is 2
b) The concentration of OH^{-}in $0.005 \mathrm{M} \mathrm{HNO}_{3}$ is $2.0 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$
c) The pH of 0.01 M KOH is 12
d) In a 0.001 M solution of NaOH the concentration of H^{+}is $10^{-3} \mathrm{~mol} / \mathrm{L}$
7. 10 mL of a solution contains $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}+0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$. Which addition would not change the pH of the solution?
a) Adding 1 mL water
b) Adding 5 mL of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
c) Adding 5 mL of 0.1 M NH 44 OH
d) Adding 10 mL of 0.1 M NH 44 Cl
8. Arrhenius theory of acid-base is not valid for:
a) Aqueous solution
b) In presence of water
c) Non-aqueous solution
d) None of these
9. The solubility in water of a sparingly soluble salt $A B_{2}$ is $1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility product number will be
a) 4×10^{-15}
b) 4×10^{-10}
c) 1×10^{-15}
d) 1×10^{-10}
10. The equilibrium constant (K_{p}) for the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 16 . If the volume of the container is reduced to one half its original volume, the value of K_{p} for the reaction at the same temperature will be
a) 8
b) 16
c) 32
d) 64
11. The indicators used in the titration of iodine against sodium thiosulphate is
a) Starch
b) $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$
c) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
d) Potassium
12. For the reaction, $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})-\mathrm{Q} \mathrm{kJ}$, the equilibrium constant depends upon
a) Temperature
b) Pressure
c) Catalyst
d) Volume
13. In the dissociation of $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$, the degree of dissociation will be influenced by the:
a) Addition of inert gas at constant volume
b) Addition of inert gas at constant pressure
c) Increase of temperature
d) Increase of pressure
14. If pressure increases then its effect on given equilibrium $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is shift in
a) Forward direction
b) Backward direction
c) No effect
d) None of these
15. Which one of the molecular hydride acts as Lewis acid?
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{B}_{2} \mathrm{H}_{6}$
d) CH_{4}
16. For the reversible reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when partial pressure is measured in atmospheres. The corresponding value of K_{c} with concentration in $\mathrm{mol} \mathrm{L}^{-1}$, is
a) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
b) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{2}}$
c) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
d) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
17. The compound that does not act as Lewis acid, is:
a) AlCl_{3}
b) BF_{3}
c) NH_{3}
d) FeCl_{3}
18. For the following reaction in gaseous phase $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) K_{p} / K_{c}$ is
a) $(R T)^{1 / 2}$
b) $(R T)^{-1 / 2}$
c) $(R T)$
d) $(R T)^{-1}$
19. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the equilibrium constants expressed in terms of concentrations K_{c} and in terms of partial pressure K_{p}, are related as
a) $K_{p}=K_{c}(R T)^{2}$
b) $K_{p}=K_{c}(R T)^{-2}$
c) $K_{p}=K_{c}$
d) $K_{c}=K_{p}(R T)$
20. In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl , the indicator used is
a) Methyl orange
b) Methylene blue
c) Phenolphthalein
d) Litmus
