

Class : XIth Date : Subject : CHEMISTRY DPP No. : 10

'opic :- Equilibr 1. Which of the following will not function as a buffer solution? (i) NaCl and NaOH (ii) NaOH and NH₄OH (iii) CH₃COONH₄ and HCl (iv) Borax and boric acid a) (i), (ii), (iii) b) (ii), (iii), (iv) c) (i), (iii), (iv) d) (i), (ii), (iii), (iv) K_{SP} of salts $AB_{A}B_{2}$ and $A_{3}B$ are 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} respectively at 2. temperature T. The solubility order of these salts in water at temperature T (in mol litre⁻¹) is: a) $AB > AB_2 > A_3B$ b) $A_3B > AB_2 > AB$ c) $AB_2 > A_3B > AB$ d) $AB > A_3B > AB_2$ Which does not act as Bronsted acid? 3. b) $CH_3COO^$ a) NH_4^+ c) $HCO_3^$ d) HSO_3^- 4. Which of the following solutions will have pH=9 at 298 K? a) 1×10^{-9} M HCl solution b) 1×10^{-5} M NaOH solution c) 1×10^{-9} M KOH solution d) Both (a) and (b) Acidosis is diagnosed when blood pH: 5. a) Falls below 7.35 b) Rises above 7.45 c) Both (a) and (b) d) None of these Which statement is false? (Assume complete dissociation in each case) 6. a) If 2.0 L of a solution of H_2SO_4 contains 0.1 mole, then pH of the solution is 2 b) The concentration of OH^- in 0.005 M HNO_3 is $2.0\times 10^{-12}\ mol/L$ c) The pH of 0.01 M KOH is 12 d) In a 0.001 M solution of NaOH the concentration of H^+ is 10^{-3} mol/L 7. 10 mL of a solution contains $0.1 M \text{ NH}_4\text{Cl} + 0.01 M \text{ NH}_4\text{OH}$. Which addition would not change the pH of the solution? a) Adding 1 mL water b) Adding 5 mL of 0.1 M NH₄Cl c) Adding 5 mL of 0.1 M NH₄OH d) Adding10 mL of 0.1 *M* NH₄Cl Arrhenius theory of acid-base is not valid for: 8. a) Aqueous solution b) In presence of water

- c) Non-aqueous solution
- d) None of these

9.	The solubility in water of a sparingly soluble salt AB_2 is 1×10^{-5} mol L ⁻¹ . Its solubility				
	product number will be				
	a) 4×10^{-15} b	$(0)4 \times 10^{-10}$	c) 1×10^{-15}	d) 1×10^{-10}	
10.	The equilibrium constant (K_p) for the reaction, $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$ is 16. If the volu				
	the container is reduced to one half its original volume, the value of K_p for the reaction at the				
	same temperature will be				
	a) 8 b	o)16	c) 32	d)64	
11.	The indicators used in the	e titration of iodine ag	gainst sodium thiosulpha	ate is	
	,	$_{3}$ Fe(CN) ₆	c) K ₂ CrO ₄	d)Potassium	
12.	·				
	$2HI(g) \rightleftharpoons H_2(g) + I_2(g) - Q kJ$, the equilibrium constant depends upon				
	a) Temperature b	o)Pressure	c) Catalyst	d)Volume	
13.	In the dissociation of $2HI \rightleftharpoons H_2 + I_2$, the degree of dissociation will be influenced by the:				
	a) Addition of inert gas at constant volume				
	b) Addition of inert gas at constant pressure				
	c) Increase of temperature				
	d) Increase of pressure				
14.	If pressure increases the <mark>n its effect on g</mark> iven equilibrium				
	$2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ is shift in				
	a) Forward direction	rward direction b) Backward direction			
	c) No effect		d) None of these		
15.	Which one of the molecular <mark>hydride acts</mark> as Lewi <mark>s acid</mark> ?				
	,	H_2O	c) B ₂ H ₆	d) CH ₄	
16.	For the reversible reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500°C, the value of K_p is 1.44×10^{-5}				
	when partial pressure is measured in atmospheres. The corresponding value of K_c with				
	concentration in mol L^{-1} , is				
	a) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$ b	1.44×10^{-5}	c) $\frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}}$	d) 1.44×10^{-5}	
	$(0.082 \times 773)^{-2}$	$(0.082 \times 773)^2$	$(8.314 \times 773)^{-2}$	$(0.082 \times 500)^{-2}$	
17.	The compound that does not act as Lewis acid, is:				
10	,) BF ₃	c) NH ₃	d) FeCl ₃	
18.	For the following reaction in gaseous phase				
	$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)K_p/K_c$ is				
	a) $(RT)^{1/2}$ b	$(RT)^{-1/2}$	c) (<i>RT</i>)	d) $(RT)^{-1}$	
19.	For the reaction $H_2(g)$	the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the equilibrium constants expressed in terms of			
	concentrations K_c and in terms of partial pressure K_p , are related as				
	a) $K_p = K_c (RT)^2$ b		•	d) $K_c = K_p(RT)$	
20.		I I	1	~,···	
20.	In the titration of Na ₂ CO ₃ and HCl, the indicator used is a) Methyl orange b) Methylene blue c) Phenolphthalein d) Litmus				
	a) Methyl orange b	meurylene blue	o rnenoipiithalein	d)Litmus	