Class: XIth

Date :

Solutions

Topic:- Equilibrium

1
(b)
$K_{c}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
If $\left[\mathrm{OH}^{-}\right]=\frac{1}{4} \times\left[\mathrm{OH}^{-}\right]_{\text {initial }}$ than $\left[\mathrm{Fe}^{3+}\right]=64\left[\mathrm{Fe}^{3+}\right]_{\text {initial }}$ to have K_{c} constant
2
(c)
$A(g) \quad+3 B(g) \rightleftharpoons 4 C(g)$
$1 \begin{array}{llll}1 & 1 & 0 & \text { Initial concentration }\end{array}$
$(1-x) \quad(1-3 x) \quad 4 x \quad$ Final concentration
(at equilibrium)
According to question, $1-x=4 x$

$$
\therefore \quad x=\frac{1}{5}
$$

For above reaction,

$$
\begin{aligned}
& K_{c}=\frac{[C]^{4}}{[A][B]^{3}}=\frac{(4 x)^{4}}{(1-x)(1-3 x)^{3}} \\
& K_{c}=\frac{\left(4 \times \frac{1}{5}\right)^{4}}{\left(1-\frac{1}{5}\right)\left(1-3 \times \frac{1}{5}\right)^{3}}=8.0
\end{aligned}
$$

(a)
m Mole of acid $=6 \times 0.1=0.6$
m Mole of salt $=12 \times 0.1=1.2$
$\therefore \mathrm{pH}=4.75+\log \frac{1.2}{0.6}=4.75+0.3010=5.05$.
4
(c)

50 mL of $0.1 \mathrm{M} \mathrm{HCl}=\frac{0.1 \times 50}{1000}=5 \times 10^{-3}$
50 mL of $0.2 \mathrm{M} \mathrm{NaOH}=\frac{0.2 \times 50}{1000}=10 \times 10^{-3}$
Hence, after neutralisation NaOH is left

$$
\begin{aligned}
& =10 \times 10^{-3}-5 \times 10^{-3} \\
& =5 \times 10^{-3}
\end{aligned}
$$

Total volume $=100 \mathrm{cc}$
The concentration of NaOH

$$
=\frac{5 \times 10^{-3} \times 1000}{100}=0.05 \mathrm{M}
$$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right] }=0.05 \mathrm{M}=5 \times 10^{-2} \mathrm{M} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
&=-\log \left[5 \times 10^{-2}\right] \\
&=1.3010 \\
& \mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pH}=14-1.3010=12.699
\end{aligned}
$$

(b)
$\begin{array}{ccccc}2 \mathrm{KCN} & +\mathrm{AgNO}_{3} & \rightarrow \mathrm{Ag}(\mathrm{CN})_{2}^{-} \\ 0.1 & 0.03 & 0 & \mathrm{KNO}_{3}\end{array}+\mathrm{K}^{+}$
$\therefore \quad\left[\mathrm{Ag}(\mathrm{CN})_{2}^{-}\right]=0.03$
Now, $\quad \mathrm{Ag}(\mathrm{CN})_{2} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{CN}^{-}$

$$
\begin{array}{ccc}
0.03 & 0 & \begin{array}{c}
0.04 \\
(0.03-a)
\end{array}
\end{array}{ }_{(0.04+a)} \text { (left from KCN) }
$$

K_{c} is small $\therefore 0.03-a \approx 0.03$ and $0.04+a \approx 0.04$
$\therefore K_{c}=4 \times 10^{-19}=\frac{(0.04)^{2} \times a}{0.03} ; \therefore a=7.5 \times 10^{-18}$
(b)

Higher $\mathrm{p} K_{a}\left(-\log K_{a}\right)$ means lower K_{a} for acid.
(a)
$N_{\mathrm{NaOH}}=1 \times 1=1 \mathrm{~N}$
$N_{\mathrm{H}_{2} \mathrm{SO}_{4}}=2 \times 10=20 \mathrm{~N}$
Millieq. of $\mathrm{NaOH}=1 \times 100=100$
Millieq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=20 \times 10=200$
Thus, Millieq. of acid are left and therefore $\mathrm{pH}<7$. So, the resulting mixture will be acidic
(a)

$$
\mathrm{pH}=4.35
$$

$\therefore \quad 4.35=-\log \left[\mathrm{H}^{+}\right]$
or $\left[\mathrm{H}^{+}\right]=$antilog of (-4.35)

$$
=4.5 \times 10^{-5} M
$$

(b)
pH of salts of weak acid and weak base is derived by the relation : $\left[\mathrm{H}^{+}\right]=\sqrt{K_{H}}=\sqrt{\frac{K_{w}}{K_{a} \cdot K_{b}}}$
(a)
$\mathrm{H}_{2} \frac{\text { Electric arc }}{2000^{\circ} \mathrm{C}} 2 \mathrm{H}-104.5 \mathrm{kcal}$
hydrogen atomic
molecule hydrogen
The reaction is endothermic. For endothermic reaction increase in temperature shift the equilibrium in forward direction. To proceed forward the pressure must be low because for the above reaction, increase of pressure will favoured backward reaction. So, for maximum yield the conditions are high temperature and low pressure.

20
(a)
$\mathrm{H}_{3} \mathrm{PO}_{2}$ is monobasic acid and thus, it forms only one normal salt.
(d)

According to Lewis, "A base is a species which can donate an electron pair." In NH_{3}, ल̈ has one lone pair. Thus, N_{3} is a Lewis base.
(d)
$K<1.0$
(b)

Higher is the value of K, more is the probability for a reaction to go for completion.
(d)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
The equilibrium constant (K_{p}) changes with the change in temperature.
Note : Variation of equilibrium constant with temperature can be express as:

$$
\log \frac{K_{2}}{K_{1}}=\frac{\Delta H}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} \cdot T_{2}}\right]
$$

(b)
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$

$$
K_{c}=\frac{\left[\mathrm{NO}^{2}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4 \times 10^{-4}
$$

$$
\mathrm{NO} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

$$
K_{c}^{\prime}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathrm{NO}]}
$$

$$
=\sqrt{\frac{1}{K_{c}}}=\sqrt{\frac{1}{4 \times 10^{-4}}}=50
$$

(b)

$$
2 A_{(\mathrm{g})}+B_{(\mathrm{g})} \rightleftharpoons 3 C_{(\mathrm{g})}+D_{(\mathrm{g})}
$$

Initial	1.0	1.0	0	0
At.Eq.	0.5	0.75	0.75	0.25

$$
K_{c}=\frac{(0.25) \times(0.75)^{3}}{(0.5)^{2} \times 0.75}
$$

(c)
$R \mathrm{NH}_{2}$ is stronger base than NH_{3}. Also HI is strong acid and thus, I^{-}is weak base.
(b)

Due to ionisation in water.
(a)
$\left[\mathrm{H}^{+}\right]=10^{-1}$
$\therefore \mathrm{pH}=1$

ANSWER-KEY										
Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A.	\mathbf{B}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{A}
Q.	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
A.	A	D	D	B	D	B	B	C	B	A

