

Class : XIIth Date : Subject : PHYSICS DPP No. : 6

Topic :-Electromagnetic Waves

1.	The density of air at the top of mesosphere in comparison to that of near the earth's surface is					
	a) 10 ^{–3} times	b) 10 ⁻⁵ times	c) 10 ³ times	d) 10 ⁵ times		
2.	A point source of electromagnetic radiation has an average power output of 800 W. The					
	maximum value of electric filed at a distance 4.0 m from the source is					
	a) 64.7 Vm^{-1}	b) 57.8 Vm^{-1}	c) 56.72 Vm ⁻¹	d) 54.77 Vm ⁻¹		
3.	The atmosphere above the height of 80 km is called					
	a) Stratosphere	b) T <mark>roposphere</mark>	c) Mesosphere	d)Ionosphere		
4.	Height <i>h</i> of transmitter ant <mark>enna when <i>R</i> is ra</mark> dius of earth to have range <i>d</i> is					
	a) $d^2/2R$	b) $\sqrt{2dR}$	c) 2 <i>d</i> ² / <i>R</i>	d) $2R^2/d$		
5.	Maxwell in his famous equa <mark>tion</mark> of elec <mark>troma</mark> gnetism introduced the concept of					
	a) AC current		b) DC current			
	c) Displacement current	nt	d) Impedance			
6.	The waves which have revo <mark>lutio</mark> nized telecommunication in more recent time, are					
	a) Micro wave	b) <mark>Radio</mark> waves	c) Light waves	d) TV waves		
7.	The charge of a parallel plate capacitor is varying as $q = q_0 \sin 2\pi f t$. The plates are very large					
	and close together (area = A , separation = d). Neglecting edge effects, the displacement					
	current through the capacitor is					
	d	d) 2-fa = 222 ft	$2\pi f q_0$		
	a) $\overline{A\varepsilon_0}$	$b \int \frac{1}{\varepsilon_0} \sin 2\pi f t$	$c_j 2\pi j q_0 \cos 2\pi j t$	d) $\frac{1}{\varepsilon_0} \cos 2\pi f t$		
8.	If a source is transmitting electromagnetic wave of frequency 8.2×10^6 Hz, then wavelength of					
	the electromagnetic waves transmitted from the source will be					
	a) 36.6 m	b) 40.5 m	c) 42.3 m	d) 50.9 m		
9.	An electric field of 1500 Vm ⁻¹ and a magnetic field of 0.40 Wbm ⁻² act on a moving electron. The					
	minimum uniform speed along a straight line the electron could have is					
	a) $1.6 \times 10^{15} \mathrm{ms}^{-1}$	b) $6 \times 10^{16} \text{ms}^{-1}$	c) $3.75 \times 10^3 \text{ms}^{-1}$	d) $3.75 \times 10^2 \text{ms}^{-1}$		
10.	The energy of X-ray photon is $3.3 imes 10^{-16}$ J. Its frequency is					
	a) 2 × 10 ¹⁹ Hz	b) $5 \times 10^{18} \text{Hz}$	c) $5 \times 10^{17} \text{ Hz}$	d) $5 \times 10^{16} \text{Hz}$		
11.	If a source is transmitting Electromagnetic Waves of frequency 8.196 $ imes$ 10 6 Hz, then the					
	wavelength of the Electromagnetic Waves transmitted from the source will be					
	a) 5090 cm	b) 4050 cm	c) 4230 cm	d) 3660 cm		

12. The phase velocity (v_p) of travelling wave is

a)
$$v_p = \frac{\omega}{k}$$
 b) $v_p = \frac{d\omega}{dk}$ c) $v_p = c$ d) $v_p = \frac{c}{v_g}$

13. If a free electron is placed in the path of a plane electromagnetic wave, it will start moving along

	a) Centre of earth	b) Equator of earth	c) Magnetic field	d) Electric field		
14.	 The energy of X-ray photon is 2200 eV. Its frequency would be 					
	a) $5.3 \times 10^{16} \text{Hz}$	b) $5.3 \times 10^{17} \text{Hz}$	c) $5 \times 10^{17} \text{Hz}$	d) 5 \times 10 ¹⁶ Hz		
15.	. Which of the following relation is correct?					

a) $\sqrt{\varepsilon_0}E_0 = \sqrt{\mu_0}B_0$ b) $\sqrt{\mu_0\varepsilon_0}E_0 = B_0$ c) $E_0 = \sqrt{\mu_0\varepsilon_0}B_0$ d) $\sqrt{\mu_0}E_0 = \sqrt{\varepsilon_0}B_0$ 16. According to Maxwell's equation the velocity of light in any medium is expressed as

a)
$$\frac{1}{\sqrt{\mu_0 \epsilon_0}}$$
 b) $\frac{1}{\sqrt{\mu \epsilon}}$ c) $\sqrt{\mu/\epsilon}$ d) $\sqrt{\frac{\mu_0}{\epsilon}}$

17. Electromagnetic Waves of frequencies higher than $9\sqrt{2}$ MHz are found to be reflected by the ionosphere on a particular day at a place. The maximum electron density in the ionosphere is a) $\sqrt{5} \times 10^{12} \text{ m}^{-3}$ b) $\sqrt{2} \times 10^{12} \text{ m}^{-3}$ c) $2 \times 10^{12} \text{ m}^{-3}$ d) $5 \times 10^{12} \text{ m}^{-3}$

18. An electromagnetic wave, going through vacuum is described by $E = E_0 \sin(kx - \omega t)$ Which of the following is independent of wavelength? a) k b) ω c) k/ω d) $k\omega$

- 19. Which of the following is absorbed by the ozone layer?a) Only gamma raysb) Visible lightc) Radio Wavesd) Ultraviolet rays
- 20. If the earth did not have atmosphere, its surface temperature on a day time would bea) Higherb) Lowerc) Same as nowd) Not sure