DPP
DAILY PRACTICE PROBLEMS

Class: XIIth Date:

Solutions

Subject: PHYSICS DPP No.: 3

Topic :- Electromagnetic Waves

1 (a)

Use method of dimensions. Equating the dimensions of two sides we note the relation (a)Is dimensionally correct

2 **(d)**

On the basis of dual nature of light, Lious de-Broglie suggested that the dual nature is not only of light, but each moving material particle has the dual nature. He assumed a wave to be associated with each moving material particle which is called the matter wave. The wavelength of this wave is determined by the momentum of the particle. If p is the momentum of the particle, the wavelength of the wave associated with it is

$$\lambda = \frac{h}{p}$$

Where *h* is Plank's constant.

Since, it is given that, alpha, beta and gamma rays carry same momentum, so they will have same wavelength.

3 **(b)**

Velocity of photon in vacuum is constant for all frequencies

4 **(c)**

A changing electric field produces a changing magnetic field and vice - versa which gives rise to a transverse wave known as Electromagnetic Wave. The time varying electric and magnetic fields are mutually perpendicular to each other and also perpendicular to the direction of propagation of this wave.

5 **(d)**

Energy of a photon $E = \frac{hc}{\lambda}$

 \therefore Wavelength $\lambda = \frac{hc}{F}$

$$= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{13.2 \times 10^3 \times 1.6 \times 10^{-19}}$$
$$= 0.9375 \times 10^{-10} \,\mathrm{m}$$

$$= 1 \text{ Å}$$

Wavelength range of X-rays is from 10^{-11} m to 10^{-8} m (0.1 Å to 100 Å). Therefore, the given electromagnetic radiation belongs to the X-ray region of electromagnetic spectrum.

6 **(c)**

Equation second shows that the electromagnetic wave travels along the positive x-axis

7 **(b)**

$$B = \frac{\mu_0}{4\pi} \frac{2i_D}{r} = \frac{\mu_0}{4\pi} \times \varepsilon_0 \frac{d\phi_E}{dt}$$
$$= \frac{\mu_0}{2\pi} \frac{2i_D}{r} = \frac{\mu_0}{4\pi} \frac{2}{r} \times \varepsilon_0 \frac{d\phi_E}{dt}$$
$$= \frac{\mu_0 \varepsilon_0 \pi r^2 dE}{2\pi r dt} = \frac{\mu_0 \varepsilon_0 r}{2} \frac{dE}{dt}$$

9 **(c**

 $E = \frac{hc}{\lambda}$; minimum the wavelength, the maximum the energy of a λ ray. Therefore rays have minimum wave length

10 **(d**)

$$V = \frac{hc}{e\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 10^{-10}} = 10,000 \text{ V}$$

11 **(b**)

$$\psi_{(x,t)} = 10^3 \sin \pi (3 \times 10^6 \, x - 9 \times 10^{14} \, t)$$
$$= 10^3 \sin 3 \times 10^6 \, \pi (x - 3 \times 10^8 \, t)$$

Comparing it with the relation

$$\psi_{(x,t)} = a \sin \frac{2\pi}{\lambda} (x - ct);$$
 We note that
$$c = 3 \times 10^8 \text{ ms}^{-1}$$

(a)

Solar radiations are transverse Electromagnetic waves. The central core of the sun emits a continuous Electromagnetic Spectrum.

14 (c)

13

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$
 or $\frac{1}{\mu_0 \epsilon_0} = c^2$
= $[M^0 L T^{-1}]^2 = [M^0 L^2 T^{-2}]$

16 **(c)**

Speed of Electromagnetic Waves in vacuum

$$=\frac{1}{\sqrt{\mu_0\varepsilon_0}}=\mathrm{costant}$$

17 **(c)**

Number of oscillator in coherence length

$$= \frac{l}{\lambda} = \frac{0.024}{5900 \times 10^{-10}}$$
$$= 4.068 \times 10^{6}$$

18 **(d)**

Electric energy density

$$u_e = \frac{1}{2} \varepsilon_0 E_{\rm rms}^2$$

$$E_{\rm rms} = \frac{E_0}{\sqrt{2}}$$

$$u_e = \frac{1}{4} \varepsilon_0 E_0^2$$

19 **(a)**
$$d = \sqrt{2hR}$$
 or $d \propto h^{1/2}$

20 **(a)**

For an Electromagnetic Wave (in vacuum),

Velocity
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \,\mathrm{ms}^{-1}$$

Air acts almost as vacuum, hence

$$a = 3(approx)$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	В	С	D	С	В	В	С	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	A	С	В	С	С	D	A	A

