

Class: XIIth Date:

Solutions

Subject: PHYSICS

DPP No.: 2

Topic :- Electromagnetic Waves

1 (c)

The wavelengths of infrared rays lie between 7800 Å to 0.004 cm

3

As v of charged particle is remaining constant, it means force acting on charged particle is

So,
$$q(\mathbf{v} \times \mathbf{B}) = q\mathbf{E}$$

$$\mathbf{v} \times \mathbf{B} = \mathbf{E}$$

$$\mathbf{v} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

6

Range, $R = \sqrt{2hr}$ where r is the radius of earth so $R \propto h^{1/2}$

7

$$B_0 = \frac{E_0}{c} = \frac{9 \times 10^3}{3 \times 10^8} = 3 \times 10^{-5} \,\mathrm{T}$$

8

$$i = \frac{dQ}{dt} = \frac{d}{dt}(CV)$$
$$= C\frac{dV}{dt} = 2 \times 10^{-12} \times 10^{12} = 2 \text{ A}$$

9

When thermal radiations (Q) fall on a body, they are partly reflected, partly absorbed and partly transmitted.

$$Q = Q_a + Q_r + Q_t$$
And
$$\frac{Q_a}{Q} + \frac{Q_r}{Q} + \frac{Q_t}{Q} = a + r + t = 1$$

$$\Rightarrow \frac{15}{150} + 0.6 + x = 1$$

or
$$0.1 + 0.6 + x = 1$$

or
$$x = 0.3$$

Transmitting power,
$$t = \frac{Q_t}{Q}$$

Transmitting power,
$$t = \frac{1}{Q}$$

$$0r 0.3 = \frac{Q_t}{150}$$

$$Q_t = 45 J$$

Intensity or power per unit area of the radiations,

$$P = pv$$

$$\Rightarrow p = \frac{P}{v}$$

$$= \frac{0.5}{3 \times 10^8} = 0.166 \times 10^{-8} \,\text{Nm}^{-2}$$

The frequency of Electromagnetic Waves produced by the oscillator is equal to the frequency of the oscillating particle ie, 10^9 Hz.

Velocity of light,
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

or $\mu_0 \varepsilon_0 = \frac{1}{c^2} = \frac{1}{(ms^{-1})^2} = s^2 m^{-2}$

The wavelength order of the given types of waves are given below

Waves Wavelength Range (in meter)

Gamma rays
$$10^{-14} - 10^{-10}$$

IR-rays $7 \times 10^{-7} = 10^{-3}$

UV-rays
$$10^{-9} - 4 \times 10^{-7}$$

Microwave $10^{-4} - 10^{0}$

The speed of light in vacuum is given by $\sqrt{\frac{1}{\mu_0 \epsilon_0}}$, where μ_0 is permeability and ϵ_0 is permittivity of free space.

17 (c)

Radiation force=momentum transferred per sec by electromagnetic wave to the mirror

$$= \frac{2S_{av}A}{c} = \frac{2 \times (10) \times (20 \times 10^{-4})}{(3 \times 10^{8})}$$
$$= 1.33 \times 10^{-10} \text{ N}$$

Using the relation

$$c = \frac{E_0}{B_0}$$

$$B_0 = \frac{E_0}{c}$$

$$= \frac{9.3}{3 \times 10^8} = 3.1 \times 10^{-8} \,\mathrm{T}$$

20 **(b)**

Radioactive source, X-ray tube, sodium vapour lamp, crystal oscillator

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	С	A	D	С	В	D	A	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	С	A	A	D	С	С	A	A	В

