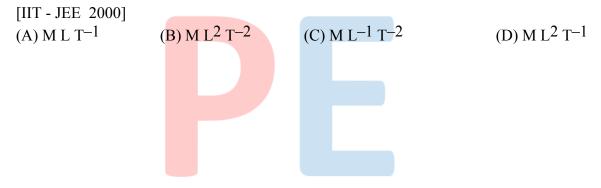
Topic :-Electro Magnetic Wave

1.	The electromagnetic v (A) ultraviolet	waves used in the telec (B) infra-red	communication are (C) visible	(D) microwaves.		
2.	A magnetic field can be produced by (A) A charge at rest only (B) a changing electric field		(B) A moving charge only(D) both by (B) and (C)			
3.	Which of the followir	Which of the following is independent of wavelength?				
	(A) k	(B) ω	(C) ωk	(D) k / ω		
4	Finger prints on a pie the paper and then loc		letected by sprinkling	flourescent powder on		
	(A) dark-light light	(B) sun-light	(C) Infra-red-light	(D) ultraviolet		
5.	exists in a circular reg the plane of the pape	varying magnetic fie gion of radius a is dire r as shown. The magn eld at point P at a dista le circular region.	cted into nitude of			
	(A) is zero		(B) decreases as 1/r			
	(C) increases as r		(D) decreases	as 1/r ²		

6. If and μ_0 represent the permittivity and permeability of vacuum and and μ represent the permittivity and permeability of medium, then refractive index of the medium is given by [CBSE PMT 1997, 2000]

	(A) $\sqrt{\frac{\mu_0 \in_0}{\mu \in}}$	(B) $\sqrt{\frac{\mu \in}{\mu_0 \in_0}}$	(C)	$\sqrt{\frac{\in}{\mu_0 \in_0}}$	(D) $\sqrt{\frac{\epsilon}{\mu_0 \epsilon_0}}$	
7.	Infrared radiation is detected by [AIEEE 2002]					
8.	(1) spectrometer	r (2) pyro where symbols have		(3) nanomete neanings, are	r (4) photometer	
	-	(2) $[L^{-2}T^2]$	(3)	[L ² T ⁻²]	(4) [L T ⁻¹]	
9.	Which of the following radiations has the least wavelength ? [AIEEE 2003]					
	(1) γ-rays	(2) β -rays	(3) 0	x-rays	(4) X-rays	
10.	 An electromagnetic wave of frequency n = 3.0 MHz passes vacuum into a dielectric medium with permittivity ε = 4.0, then [AIEEE 2004] (1) wavelength is doubled and the frequency remains unchanged (2) wavelength is doubled and frequency becomes half (3) wavelength is halved and frequency remains unchanged (4) wavelength and frequency both remain unchanged 					
11	always perpend	An electromagnetic wave in vacuum has the electric and magnetic field and, which are always perpendicular to each other. The direction of polarization is given by and that of wave propagation by . Then				
	(1) and		(2) and (4)		[AIEEE 2012]	
	(3) and		(4) and			
12.	The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. T peak value of electric field strength is : [JEE-MAIN 2013]				eak value of 20 nT. The	
	(1) 3V/m (4) 12 V	(2) 6V/	-	(3) 91	//m	
13	3 Match List-I (Electromagnetic wave type) with List-II (Its association / application select the correct option from the choices given below the lists: [JEE-Main 2014]					
	I (a) Infrared	List – I waves	(i) T	List – II o treat muscular	strain	
	(b) Radio w		(ii) For broadcasting			
	(c) X-rays (d) Ultravio atmosphere	let rays	(iii) To detect fracture of bones(iv) Absorbed by the ozone la			
	(1) (iii) (b) (c) (d) ii) (i) (iv) ii) (iii) (iv)				


(3)	(iv)	(iii)	(ii)	(i)
(4)	(i)	(ii)	(iv)	(iii)

14 During the propagation of electromagnetic waves in a medium: [JEE-Main 2014]

- (1) Electric energy density is equal to the magnetic energy density.
- (2) Both electric and magnetic energy densities are zero.
- (3) Electric energy density is double of the magnetic energy density.
- (4) Electric energy density is half of the magnetic energy density.
- 15 Arrange the following electromagnetic radiations per quantum in the order of increasing energy : [JEE-Main 2016] A : Blue light B : Yellow light C : X-ray D : Radiowave

I CHOW Hght	C. A-lay	D. Raulowave.	
(1) A,B,D,C	(2) C,A,B,D	(3) B,A,D,C	(4) D,B,A,C

16 The dimensions of $\varepsilon_0 E^2$ (ε_0 : permittivity of free space; E: electric field) is

