

Class: XIIth Date:

Solutions

Subject: PHYSICS DPP No.: 1

Topic :- Electromagnetic Waves

1 (a)

Here, amplitude of electric filed, $E_0=100~\rm Vm^{-1}$; amplitude of magnetic field, $B_0=0.265~\rm A~m^{-1}$. We know that the maximum rate of energy flow

$$S = E_0 \times B_0 = 100 \times 0.265 = 26.5 \,\mathrm{Wm}^{-2}$$

2 **(a)**

X-rays being of high en<mark>ergy radiations</mark>, penetrate the target and hence are not reflected back

3 **(a)**

 $\sqrt{\frac{\mu}{\epsilon}}=$ has the dimensions of resistance, hence it is called the intrinsic impedance of the medium

4 (c)

Power = $I \times \text{area} = (1.4 \times 10^3) \times 5$

Force
$$F = \frac{\text{Power}}{c} = \frac{1.4 \times 10^3 \times 5}{3 \times 10^8}$$

= 2.33 × 10⁻⁵ N

5 **(a)**

The amplitude of the electric and magnetic fields in free space are related by $\frac{E_0}{B_0}=c$ Here, $E_0=30~{\rm Vm^{-1}}$, $c=3~\times10^8~{\rm ms^{-1}}$

$$\therefore B_0 = \frac{E_0}{c} = \frac{30}{3 \times 10^8} = 10^{-7} \,\mathrm{T}$$

6 **(a)**

Displacement current is given by

$$I_d = \frac{dq}{dt} = 1.8 \times 10^{-8} \,\mathrm{Cs}^{-1}$$

7 **(b)**

Velocity of light in vacuum

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

velocity of light in medium

$$v = \frac{1}{\sqrt{\mu \, \varepsilon}}$$

$$\therefore \qquad \mu = \frac{c}{v} = \left(\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}\right)^{1/2}$$

8 **(c)**

According to Maxwell, a changing electric field is a source of magnetic field

9 **(b)**

The electric field induced by changing magnetic field depends upon the rate of change of magnetic flux, hence it is non-conservative

10 **(b)**

$$U = \frac{1}{2} \times \frac{1}{2} \varepsilon_0 E^2 = \frac{1}{2} \times \frac{1}{2} \times 8.85 \times 10^{-12} \times (2)^2$$

= 8.85 \times 10^{-12} Jm^{-3}

11 (c)

Total power=solar constant \times area = $10^4 \times (10 \times 10) = 10^6 \text{ W}$

12 **(b)**

Infrared radiations are detected by pyrometer

14 **(d)**

The equation of electric field occurring in *Y*-direction

$$E_y = 66\cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

Therefore, for the magnetic field in Z-direction

$$B_z = \frac{E_y}{c}$$

$$= \left(\frac{66}{3 \times 10^8}\right) \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$= 22 \times 10^{-8} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$= 22 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

17 **(b)**

In an electromagnetic wave, the average energy density of magnetic field $\mu_B=$ average energy density of electric filed $\nu_E=\frac{1}{4}\varepsilon_0 E_0^2$

$$= \frac{1}{4} \times (8.85 \times 10^{-12}) \times 1^{2}$$
$$= 2.21 \times 10^{-12} \,\mathrm{Jm}^{-3}$$

In vacuum, ε_0 =1

In medium, $\varepsilon = 4$

So, refractive index

$$\mu = \sqrt{\epsilon/\epsilon_0} = \sqrt{4/1} = 2$$

wavelength

$$\lambda' = \frac{\lambda}{\mu} = \frac{\lambda}{2}$$

and wave velocity $v = \frac{c}{\mu} = \frac{c}{2}$

Hence, it is clear that wavelength and velocity will become half but frequency remains uncharged when the wave is passing through any medium.

19 (d)

$$I = \frac{1}{2} \varepsilon_0 E_0^2 c$$

or
$$E_2 = \sqrt{\frac{2I}{\varepsilon_{00}}}$$

or
$$E_2 = \sqrt{\frac{2I}{\varepsilon_0 c}}$$

= $\sqrt{\frac{2 \times 4}{(8.85 \times 10^{-12}) \times (3 \times 10^8)}} = 55.5 \text{ NC}^{-1}$

Intensity
$$I = \frac{pressure}{area} = \frac{p}{4\pi r^2}$$

=average energy density × velocity

$$=\frac{1}{2}\varepsilon_0 E_0^2 c$$

$$= \frac{1}{2}\varepsilon_0 E_0^2 c$$

$$\therefore E_0 = \sqrt{\frac{2P}{4\pi\varepsilon_0 r^2 c}} = \sqrt{\frac{P}{2\pi\varepsilon_0 r^2 c}}$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	A	A	С	A	A	В	С	В	В	

Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	С	D	В	С	В	С	D	С

