

Class : XIIth Date : Subject : PHYSICS DPP No. : 9

Topic :-Electro Magentic Induction

- 1. When a low flying aircraft passes over head, we sometimes notice a slight shaking of the picture on our TV screen. This is due to
 - a) Diffraction of the signal received from the antenna.
 - b) Interference of the direct signal received by the antenna with the weak signal reflected by the passing aircraft.
 - c) Change of magnetic flux occuring due to the passage of aircraft
 - d) Vibration created by the passage of aircraft
- 2. A straight wire of length L is bent into a semicircle. It is moved in a uniform magnetic field with speed v with diameter perpendicular to the field. The induced emf between the ends of the wire is

b)2 <i>BLv</i>	c) 2 <i>πBLv</i>	d) $\frac{2BvL}{\pi}$
	b) 2 <i>BLv</i>	b) $2BLv$ c) $2\pi BLv$

3. A boat is moving due east in a region where the earth's magnetic field is $5.0 \times 10^{-5} \text{ NA}^{-1} \text{m}^{-1}$ due north and horizontal. The boat carries a vertical aerial 2 m long. If the speed of the boat is 1.50ms^{-1} , the magnitude of the induced emf in the wire of aerial is

a) 0.75 mV b) 0.5	0 mV c) 0.1	5 mV d) 1 r	mV
-------------------	-------------	-------------	----

4. A conducting circular loop is placed in a uniform magnetic field 0.04 *T* with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at 2 mm/s. The induced *emf* in the loop when the radius is 2 *cm* is

```
a) 3.2 πμV
b) 4.8 πμV
c) 0.8 πμV
d) 1.6 πμV
5. A square loop of wire, side length 10 cm is placed at angle of 45° with a magnetic field that changes uniformly from 0.1 T to zero in 0.7 s. The induced current in the loop (its resistance is
```

1 Ω)is

a) 1.0 mA	b) 2.5 mA	c) 3.5 mA	d)4.0 mA
5	5	2	,

- 6. An infinitely cylinder is kept parallel to an uniform magnetic field *B* directed along positive *z* axis. This direction of induced current as seen from the *z* axis will be
 - a) Clockwise of the +ve *z* axis b) Anticlockwise +ve *z* axis

c) Zero

- d) Along the magnetic field
- 7. The self inductance of a solenoid of length *L*, area of cross-section *A* and having *N* turns is N^{2}

a)
$$\frac{\mu_0 N^2 A}{L}$$
 b) $\frac{\mu_0 N A}{L}$ c) $\mu_0 N^2 L A$ d) $\mu_0 N A L$

8. A conducting rod *AC* of length 4*l* is rotated about a point *O* in a uniform magnetic field \vec{B} directed into the paper. AO = l and OC = 3l. Then

$$\overset{\times}{\underset{\times}{}}^{\times} \overset{\times}{\underset{\times}{}}^{\times} \overset{\times}{\underset{\times}{}} \overset{\times}{}$$
{}

- 9. A transformer of efficiency 90% draws an input power of 4 kW. An electrical appliance connected across the secondary draws a current of 6 A. The impedance of the device is a) 60 Ω b) 50 Ω c) 80 Ω d) 100 Ω
- 10. The variation of induced $emf(\varepsilon)$ with time (*t*) in a coil if a short bar magnet is moved along its axis with a constant velocity is best represented as

11. Three solenoid coils of same dimension, same number of turns and same number of layers of winding are taken. Coil 1 with inductance L_1 was wound using a Mn wire of resistance $11\Omega m^{-1}$; Coil 2 with inductance L_2 was wound using the similar wire but the direction of winding was reversed in each layer; Coil 3 with inductance L_3 was wound using a superconducting wire. The self-inductance of the Coils L_1 , L_2 , L_3 are

a) $L_1 = L_2 = L_3$ b) $L_1 = L_2$; $L_3 = 0$ c) $L_1 = L_3$; $L_2 = 0$ d) $L_1 > L_2 > L_3$

- 12. A transformer is often filled with oil. The oil used should have
 - a) Low viscosity

c) Low boiling point

b) High dielectric strength

- d) High thermal conducting
- 13. Which of the following is a wrong statement
 - a) An emf can be induced between the ends of a straight conductor by moving it through a uniform magnetic field
 - b) The self induced emf produced by changing current in a coil always tends to decrease the current
 - c) Inserting an iron core in a coil increases its coefficient of self induction
 - d) According to Lenz's law, the direction of the induced current is such that it opposes the flux change that causes it
- 14. Voltage in the secondary coil of a transformer does not depend upon

b) $\omega^2 LB$

- a) Voltage in the primary coil
- c) Frequency of the source

- b) Ratio of number of turns in the two coils d) Both (a) and (b)
- 15. Fleming's left and right hand rule are used in
 - a) DC motor and AC generator
 - c) DC motor and DC generator
- b) DC generator and AC motor
- d) Both rules are same, any one can be used
- 16. A horizontal rod of length L rotates about a vertical axis with a uniform angular velocity ω . A uniform magnetic field B exists parallel to the axis of rotation. Then potential difference between the to ends of the rod is

a) $\omega L^2 B$

d) $\frac{1}{2}\omega^2 LB$

17. A rectangular loop has a sliding connector PQ of length l and resistance $R \Omega$ and it is moving with a speed v as shown. The set-up is placed in a uniform magnetic field going into the plane of the paper. The three currents I_1, I_2 and I are

a)
$$I_1 = -I_2 = \frac{Blv}{R}$$
, $I = \frac{2Blv}{R}$

b)
$$I_1 = I_2 = \frac{Blv}{3R}, I = \frac{2Blv}{3R}$$

c) $I_1 = I_2 = I = \frac{Blv}{R}$

d)
$$I_1 = I_2 = \frac{Blv}{6R}, I = \frac{Blv}{3R}$$

- 18. In transformer, core is made of soft iron to reduce
 - a) Hysteresis losses b) Eddy current losses
 - c) Force opposing electric current

d) None of the above

- 19. A coil of self inductance 50 *henry* is joined to the terminals of a battery of e.m.f. 2 *volts* through a resistance of 10 *ohm* and a steady current is flowing through the circuit. If the battery is now disconnected, the time in which the current will decay to 1/*e* of its steady value is

 a) 500 seconds
 b) 50 seconds
 c) 5 seconds
 d) 0.5 seconds
- 20. In which of the following circuit is the current maximum just after the switch *S* is closed

