Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. : 8

Topic :- Electro Magentic Induction

$$= \frac{1}{2} B\pi r^{2} \cos \omega t \qquad \left[\because A = \frac{1}{2} \pi r^{2} \right]$$

$$\therefore e_{induced} = -\frac{d\phi}{dt}$$

$$= -\frac{d}{dt} \left(\frac{1}{2} B\pi r^{2} \cos \omega t \right)$$

$$= \frac{1}{2} B\pi r^{2} \omega \sin \omega t$$

$$\therefore \text{ power } p = \frac{e_{induced}^{2}}{R}$$

$$= \frac{B^{2} \pi^{2} r^{4} \omega^{2} \sin^{2} \omega t}{4R}$$

Hence, $P_{mean} =$

$$= \frac{B^{2} \pi^{2} r^{4} \omega^{2}}{4R} \cdot \frac{1}{2} \qquad \left(\because < \sin \omega t > = \frac{1}{2} \right)$$

$$= \frac{(B\pi r^{2} \omega)^{2}}{8R}$$

(b)

$$\left(\frac{d\phi}{dtr} \right)_{in \text{ first case}} = e$$

$$\left(\frac{d\phi}{dt} \right)_{relative velocity 2v} = 2 \left(\frac{d\phi}{dt} \right)_{1 \text{ case}} = 2e$$

10

11

(b)

A conducting rod of length l whose one end is fixed, is rotated about the axis passing through its fixed end and perpendicular to its length with constant angular velocity ω . Magnetic field (*B*) is perpendicular to the plane of the paper.

Emf induced across the ends of the rod is e = BAn

12 **(a)**

$$v_0 = \frac{1}{2\pi\sqrt{(0.25) \times (0.1 \times 10^{-6})}} = \frac{10^4}{9.93} = 1007 \, Hz$$

13

(c)

Eddy currents are set up when a plate swings in a magnetic field. This opposes the motion

14

(c)

$$i = \frac{|e|}{R} = \frac{N}{R} \cdot \frac{\Delta B}{\Delta t} A \cos \theta = \frac{20}{100} \times 1000 \times (25 \times 10^{-4}) \cos 0^{\circ}$$

$$\Rightarrow i = 0.5 A$$

(c)

$$l = 36m, v = 400 \text{ kmh}^{-1}$$

 $= \frac{400 \times 1000}{60 \times 60} = \frac{100}{9} \text{ ms}^{-1}$
 $= V = 4 \times 10^{-5} \text{ T}$
 $e = Blv = 4 \times 10^{-5} \times 36 \times \frac{1000}{9} = 0.160$

16

(a)

(b)

Given
$$\frac{di}{dt} = 2A/sec.$$
, $L = 5H$ $\therefore e = L\frac{di}{dt} = 5 \times 2 = 10V$

17

(c)

$$i = \frac{V}{R} = \frac{10}{2} = 5A$$

 $U = \frac{1}{2}Li^2 = \frac{1}{2} \times 2 \times 25 = 25J$

18

When coil is open, there is no current in it, hence no flux associated with it, $ie, \varphi = 0$. Also, we know that flux linked with the coil is directly proportional to the current in the coil,

ie, $\phi \propto i$

Or $\phi = Li$

Where *L* is proportionality constant known as self-inductance.

:.

 $L = \frac{\Phi}{i} = 0$

Again since i = 0, hence $R = \infty$.

19 **(b)**

The magnitude of induced e.m.f. is directly proportional to the rate of change of magnetic flux. Induced charge doesn't depend upon time

20

(c)

Motor e.m.f. equation $E_b = V - I_a R_a$

At starting $E_b = 0$, so I_a will be maximum

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	Α	D	A	C	D	D	В	В	C	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	А	C	C	C	A	C	В	В	С

