Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 5

Topic :- Electro Magentic Induction

1
(b)
$\frac{L_{B}}{L_{A}}=\left(\frac{n_{B}}{n_{A}}\right)^{2} \Rightarrow L_{B}=\left(\frac{500}{600}\right)^{2} \Rightarrow 108=75 \mathrm{mH}$

7
(a) $a=\mathrm{g}$.
(b)

Power $P=\frac{e^{2}}{R}$; hence $e=-\left(\frac{d \phi}{d t}\right)$ where $\phi=N B A$
$\therefore e=-N A\left(\frac{d B}{d t}\right)$. Also $R \propto \frac{1}{r^{2}}$
Where $R=$ resistance, $r=$ radius, $l=$ length
$\therefore P \propto \frac{N^{2} r^{2}}{l} \Rightarrow \frac{P_{1}}{P_{2}}=1$
(a)
$\frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}} \Rightarrow \frac{250}{100}=\frac{V_{s}}{28 / \sqrt{2}} \Rightarrow V_{s}=50 \mathrm{~V}$
(d)
$e=B l^{2} \pi v=0.4 \times 10^{-4} \times(0.5)^{2} \times(3.14) \times \frac{120}{60}$
$=6.28 \times 10^{-5} \mathrm{~V}$
(b) enters in the magnetic field, emf $=0$
When it exists, x increases but $\frac{d B}{d t}$ decreases, i.e.,e is positive
(b)

Though emf is induced in the copper ring, but there is no induced current because current because of cut in the ring. Hence nothing opposes the free fall of the magnet. Therefore,

As x increases so $\frac{d B}{d t}$ increases, i.e., induced emf (e) is negative. When loop completely
$U=\frac{1}{2} L i^{2}$, i.e., $\frac{U_{2}}{U_{1}}=\left(\frac{i_{2}}{i_{1}}\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \Rightarrow U_{2}=\frac{1}{4} U_{1}$

8
(c)

Given, $L=10 \mathrm{H}, f=50 \mathrm{~Hz}$
For maximum power

$$
\begin{array}{rlrl}
X_{C} & =X_{L} \\
\frac{1}{\omega C} & =\omega L \\
C & =\frac{1}{\omega^{2} L} \\
\therefore \quad C & =\frac{1}{4 \pi^{2} \times 50 \times 50 \times 10} \\
C & C & =0.1 \times 10^{-5} \mathrm{~F}=1 \mu \mathrm{~F}
\end{array}
$$

(c)
$\eta=\frac{e}{E} \times 100 \Rightarrow e=0.3 E$
Now, $i=\frac{E-e}{R} \Rightarrow 12=\frac{50-(0.3 \times 50)}{R} \Rightarrow R=2.9 \Omega$
(c) with the loop.
(b)

In transformer

$$
\begin{aligned}
\frac{n_{p}}{n_{s}} & =\frac{V_{P}}{V_{S}} \\
& =\frac{5000}{240}=20.8
\end{aligned}
$$

(b) main current. So $i>0.5 \mathrm{~A}$
(b)
$e \propto \omega$
$\frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}} \Rightarrow \frac{1}{20}=\frac{V}{2400} \Rightarrow V_{s}=120 \mathrm{~V}$
For 100\% efficiency $V_{s} i_{s}=V_{p} i_{p}$
$\Rightarrow 120 \times 80=2400 i_{p} \Rightarrow i_{p}=4 \mathrm{~A}$
(d)

Total charge induced in a loop depends on resistance and change in magnetic flux linked

If resistance is constant (10Ω) then steady current in the circuit $i=\frac{5}{10}=0.5 \mathrm{~A}$. But resistance is increasing it means current through the circuit starts decreasing. Hence inductance comes in picture which induces a current in the circuit in the same direction of

From, Faraday's second law, $e=-\frac{d \phi}{d b}$
$=-[12 t-5]$
$=-[12 \times(0.25)-5]=+2$
Now, $i=\frac{e}{R}=\frac{2}{20}=0.1 \mathrm{~A}$
(d)

Efficiency of a transformer,
$\eta=\frac{\text { Power output }}{\text { Power input }}$
For an ideal transformer, $\eta=1$
\therefore Power output $=$ Power input $=60 \mathrm{~W}$
(b)

Induced e.m.f. $=B l v=0.3 \times 10^{-4} \times 10 \times 5$
$=1.5 \times 10^{-3} V=1.5 \mathrm{mV}$
(b)

Magnetic flux , $\phi=\int \mathbf{B} \cdot \mathbf{d A}=B A \cos \theta$, where θ is angle between normal to the area $d A$ with magnetic field B.
Here, $\theta=\left(90^{\circ}-30^{\circ}\right)=60^{\circ}$
and $\theta=10^{-4} \times \pi\left[\frac{21}{2} \times 10^{-2}\right]^{2} \times \cos 60^{\circ}$

$$
=1.732 \times 10^{-6} \mathrm{~Wb}
$$

(c)

Current in B_{1} will promptly become zero while current in B_{2} will slowly tend to zero

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	B	A	D	B	B	C	C	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	B	B	C	D	D	D	B	B	C			

