Class : XIIth Date :

Solutions

D

P

DAILY PRACTICE PROBLEMS

Subject : PHYSICS DPP No.:4

Topic :- Electro Magentic Induction

1

(d)

Cross ⊗ magnetic field passing from the closed loop is increasing. Therefore, from Lenz's law induced current will produce dot \odot magnetic field. Hence, induced current is anticlockwise.

2	(a)
	$h = L - L\cos\theta$
	*
	$\Rightarrow h = L(1 - \cos \theta) \qquad \dots (i)$
	$\therefore v^2 = 2gh - 2gL(1 - \cos\theta)$
	$= 2g L\left(2\sin^2\frac{\theta}{2}\right)$
	$\Rightarrow v = 2\sqrt{gL}\sin\frac{\theta}{2}$
	Thus, maximum potential difference
	$V_{max} = BvL$
	$= B \times 2\sqrt{gL} \sin \frac{\theta}{2}L$
	$= 2BL\sin\frac{\theta}{2}(gL)^{1/2}$
4	(b)

Rate of work
$$= \frac{W}{t} = P = Fv$$
; also $F = Bil = B\left(\frac{Bvl}{R}\right)l$
 $\Rightarrow P = \frac{B^2v^2l^2}{R} = \frac{(0.5)^2 \times (2)^2 \times (1)^2}{6} = \frac{1}{6}W$

5

(c)

(d)

(d)

(c)

The emf developed between the ends of the conductor

$$e = \frac{1}{2}B\lambda^2\omega$$
$$= \frac{1}{2} \times 0.2 \times 10^{-4} \times (1)^2 \times 5 = 50\mu V$$

6

$$e = B \cdot \frac{dA}{dt} = L \frac{di}{dt} \Rightarrow 1 \times \frac{5}{10^{-3}} = L \times \frac{(2-1)}{2 \times 10^{-3}} \Rightarrow L = 10H$$

7

More rapid is the movement of bar magnet, more is the deflection observed in the galvanometer

8

In a generator e.m.f. is induced according as Lenz's rule

9 **(a)**

Since the current is increasing, so inward magnetic flux linked with the ring also increases (as viewed from left side). Hence induced current in the ring is anticlockwise, so end *x* will be positive

Induced emf
$$|e| = A \frac{dB}{dt} = A \frac{d}{dt} (B_0 + \alpha t) \Rightarrow |e| = A\alpha$$

10 **(c)**

From Faraday's law of electromagnetic induction

 $e = -\frac{d\Phi}{dt} = -BAN$ Given, B = 0.1 T, N = 20, $A = \pi r^2 = \pi (0.1)^2$ $\therefore e = -0.1 \times 20 \times \pi (0.1)^2 = 20\pi$ mV

11. **(d)**

Mutual inductance between two coil in the same plane with their centers coinciding is given by

$$M = \frac{\mu_0}{4\pi} \left(\frac{2\pi^2 R_2^2 N_1 N_2}{R_1} \right) henry$$

12 **(d)**

Using Fleming's right hand rule, the direction of magnetic induction \vec{B} in the region *P* is downward into the paper.

13 **(b)**

Transformation ratio, $k = \frac{N_s}{N_p} = \frac{V_s}{V_p}$ For step-up transformer, $N_s > N_p$, $ie, V_s > V_p$, hence, k > 1.

14 **(b)**

$$N_2\phi_2 = Mi_1 \Rightarrow 9 \times 10^{-5} = M \times 3 \Rightarrow M = 3 \times 10^{-5} H$$

15 **(a)**

Faraday's laws involve conversion of mechanical energy into electrical energy. This is in accordance with the law of conservation of energy

16

(d)

KE of charged possible in a cyclotron,

$$E_{k} = \frac{q^{2}B^{2}r^{2}}{2m}$$

But frequency $f = \frac{qB}{2\pi m}$
 $\therefore E_{k} = \frac{(2\pi mf)^{2}r^{2}}{2m} = 2\pi^{2}mf^{2}r^{2}$
Or $E_{k} = 2 \times (3.14)^{2} \times 1.67 \times 10^{-27} \times (10 \times 10^{6})^{2} \times (0.5)^{2}$
 $= 8.23 \times 10^{-13}$ J
 $\therefore E_{k} = \frac{8.23 \times 10^{-13}}{1.6 \times 10^{-19}} = 5.1 \times 10^{6} \text{ eV} = 5.1 \text{ MeV}$

(b) Magnetic flux, $\phi = 5t^2 - 4t + 1 Wb$ $\therefore \frac{d\phi}{dt} = 10t - 4 Wb s^{-1}$ The induced emf is $\varepsilon = \frac{-d\phi}{dt} = -(10t - 4)$ At, t = 0.2 S, $\varepsilon = -(10 \times 0.2 - 4) = 2V$ The induced current is $I = \frac{\varepsilon}{R} = \frac{2V}{10\Omega} = 0.2 A$

(b)

(b)

$$i = i_0 \left(1 - e^{\frac{Rt}{L}} \right) \Rightarrow \frac{di}{dt} = -i_0 \left(-\frac{R}{L} \right) e^{\frac{Rt}{L}} = \frac{i_0 R}{L} \cdot e^{\frac{Rt}{L}}$$

At $t = 0$; $\frac{di}{dt} = \frac{i_0 R}{L} = \frac{E}{L} \Rightarrow 4 = \frac{E}{20} \Rightarrow E = 80 V$

19

By the movement of both the magnets, current will be anticlockwise, as seen from left side, *i.e.*, plate 1 will be positive and 2 will be negative

If current through A increases, magnetic field (\times) linked with coil B increases. Hence anticlockwise current induces in coil B. As shown in figure both the currents produce repulsive effect

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	A	A	В	С	D	D	С	A	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	D	В	В	А	D	В	В	В	D		

