Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 2

Topic :- Electro Magentic Induction

1
(d)
$\eta=\frac{V_{s} i_{s}}{V_{p} i_{p}} \times 100=\frac{11 \times 90}{220 \times 5} \times 100=90 \%$
(c)

In the construction of mouth piece of a telephone, we use the phenomenon of change of resistance with pressure (of sound waves).
(d)
$e=M \frac{d i}{d t}=0.09 \times \frac{20}{0.006}=300 \mathrm{~V}$

4
5

6

7
(b)

Betatron uses the phenomenon of electromagnetic induction.
(b)

Induced potential difference between two ends $=B l v=B_{H} l v$
$=3 \times 10^{-5} \times 2 \times 50=30 \times 10^{-3}$ volt $=3$ millivolt
By Fleming's right hand rule, end A becomes positively charged
(d)
$e_{0}=\omega N B A=(2 \pi v) N B A$
$=2 \times 3.14 \times 1000 \times 5000 \times 0.2 \times 0.25=157 \mathrm{kV}$
(a)

Here, $A=10 \times 5=50 \mathrm{~cm}^{2}=50 \times 10^{-4} \mathrm{~m}^{2}$
$\frac{d B}{d t}=0.2 \mathrm{Ts}^{-1}$
$R=2 \Omega$
$E=\frac{d \phi}{d t}=A \cdot \frac{d B}{d t}=50 \times 10^{-4} \times 0.02=10^{-4} \mathrm{~V}$

Power dissipated in the form of heat

$$
=\frac{E^{2}}{R}=\frac{10^{-4} \times 10-4}{2}=0.5 \times 10^{-8} \mathrm{~W}
$$

$$
=5 \times 10^{-9} \mathrm{~W}=5 \mathrm{nW}
$$

8

9
(a)

While moving due north, the truck intercepts vertical component of earth's field.
$\therefore e=B l v=\left(90 \times 10^{-6}\right) 2.5 \times 30$
$=6.75 \times 10^{-23} \mathrm{~V}=6.75 \mathrm{mV}$
According to Lenz's law, west end of the axle will be positive.
(c)

Inductors obey the laws of parallel and series combination of resistors
(a)
$H=\frac{V^{2} t}{R}$ and $V=\frac{N\left(B_{2}-B_{1}\right) A \cos \theta}{t}$
$V=\frac{1 \times(1-2) \times 0.01 \times \cos 0^{\circ}}{10^{-3}}=10 \mathrm{~V}$
So, $H=\frac{(10)^{2} \times 10^{-3}}{0.01}=10 \mathrm{~J}$
(b)

$$
\begin{aligned}
N=1000, \quad & A=500 \mathrm{~cm}^{2}=500 \times 10^{-4} \\
& =5 \times 10^{-2} \mathrm{~m}^{2} \\
B & =2 \times 10^{-5} \mathrm{~Wb}-\mathrm{m}^{-2}, \theta_{1}=0^{\circ}, \\
\theta_{2} & =180^{\circ}, \Delta t=0.2 \mathrm{~s}
\end{aligned}
$$

Initial flux linked with coil

$$
\begin{aligned}
\phi_{1} & =N B A \cos \theta_{1} \\
& =N B A \cos 0^{\circ} \\
& =N B A
\end{aligned}
$$

Final flux $\phi_{2}=N B A \cos 180^{\circ}$

$$
=N B A(-1)=-N B A
$$

Change in flux $\phi=\phi_{2}-\phi_{1}$

$$
=-N B A-(N B A)=-2 N B A
$$

\therefore Induced emf

$$
\begin{aligned}
e & =\frac{-\Delta \phi}{\Delta t}=-\frac{(-2 N B A)}{\Delta t}=\frac{2 N B A}{\Delta t} \\
& =\frac{2 \times 1000 \times 2 \times 10^{-5} \times 5 \times 10^{-2}}{0.2} \\
& =10 \times 10^{-3} \mathrm{~V}=10 \mathrm{mV}
\end{aligned}
$$

(d)

The magnetic flux through area A placed in magnetic field B is

$$
\phi=B A \cos \theta
$$

$$
\text { given, } \theta=0^{\circ}, B=1 \mathrm{Ts}^{-1} \text {, }
$$

$$
A=(10)^{2} \mathrm{~cm}^{2}=10^{-2} \mathrm{~m}^{2}
$$

$$
\therefore \quad \phi=1 \times 10^{-2}
$$

By Faraday's law, induced emf is

$$
\begin{aligned}
e & =-N \frac{\Delta \phi}{\Delta t} \\
& =-500 \times 10^{-2}=-5 \mathrm{~V}
\end{aligned}
$$

(c)

$$
\begin{aligned}
L & =\frac{\mu_{0} N^{2} A}{l}=\frac{4 \pi \times 10^{-7} \times(1000)^{2} \times 10 \times 10^{-4}}{1} \\
& =1.256 \mathrm{mH}
\end{aligned}
$$

(b)
$e=B v l \Rightarrow e=0.7 \times 2 \times\left(10 \times 10^{-2}\right)=0.14 \mathrm{~V}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	C	D	B	B	D	A	A	A	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	A	B	D	B	A	C	B	C	D		

