

Class : XIIth Date : Subject : PHYSICS DPP No. : 10

Topic :-Electro Magentic Induction

1.	A circular loop of radius R , carrying current I lies in xy — plane with its centre at origin. The total magnetic flux through xy -plane is					
	a) Directly proportional or <i>R</i> b) Directly proportional or <i>R</i>	b) Directly proportional or <i>I</i>				
	c) Inversely proportional to <i>I</i> d) Ze	d) Zero				
2.	. The number of turns of the primary and the secondar	ry coils of a transformer are 10 and 100				
	respectively. The primary voltage and the current are given as $2 V$ and $1 A$. Assuming the					
	efficiency of the transforme <mark>r as 90%, the</mark> secondary voltage and the current respectively are					
	a) 20V and 0.1A b) 0 <mark>.2V a</mark> nd 1A c) 20	V and 0.09 A d) 0.2 V and 0.9 A				
3.	. Two coils are placed close t <mark>o eac</mark> h othe <mark>r. The</mark> mutual	inductance of the pair of coils depends				
	upon					
	a) The rates at which curre <mark>nts are changing</mark> in the two coils					
	b) Relative position and ori <mark>entat</mark> ion of the two co <mark>ils</mark>					
	c) The materials of the wire <mark>s of t</mark> he coils					
	d) The currents in the two c <mark>oils</mark>					
4.	. A six pole generator with fixed field excitation deve	lopes an emf of 100 V, when operating at				
	1500 rpm. At what speed must it rotate to develop 120 V?					
	a) 1200 rpm b) 1800 rpm c) 15	00 rpm d) 400 rpm				
5.	If a coil of metal wire is kept stationary in a non-uniform magnetic field, then					
	a) An e.m.f. is induced in the coil b) A c	current is induced in the coil				
	c) Neither e.m.f. nor current is induced d) Bo	th e.m.f. and current is induced				
6.	. A transformer is used to light a 100 W and 110 V lan	W and 110 V lamp from a 220 V mains. If the main current				
	is 0.5 A, the efficiency of the transformer is approximately					
	a) 30% b) 50% c) 90	% d)10%				
7.	. The number of turns in the primary coil of a transfor	mer is 200 and the number of turns in the				
	secondary coil is 10. If 240 <i>volt AC</i> is applied to the p	rimary, the output from the secondary				
	will be					
0	a) 48 V b) 24 V c) 12	V d)6V				
8.	Whenever a magnet is moved either towards or away from a conducting coil, an emf is induce					
	the magnitude of which is independent of					
	a) The strength of the magnetic field b) The	b) The speed with which the magnet is moved				
	J The number of turns is the coll dJ The resistance of the coll					

9.	A helicopter rises vertically with a speed of 100 ms ⁻¹ . If helicopter has length 10 m and				
	horizontal component of earth's magnetic field is 5×10^{-3} Wbm ⁻² , then the induced emf				
	between the tip of nose and tail of helicopter is				
	a) 50 V	b) 0.5 V	c) 5 V	d)25 V	
10.	A coil of Cu wire (radiu	is- <i>r</i> , self inductance- <i>L</i>) is	s bent in two concentric	c turns each having	
	radius $\frac{r}{2}$. The self inductance now				
	a) 2 <i>L</i>	b) <i>L</i>	c) 4 <i>L</i>	d) <i>L</i> /2	
11.	The net magnetic flux through any closed surface, kept in a magnetic field is				
	a) Zero	b) $\frac{\mu_0}{4\pi}$	c) 4πμ ₀	d) $\frac{4\mu_0}{\pi}$	
12.	2. A coil of resistance 400 Ω is placed in a magnetic filed. If the magnetic flux $\phi(\mathrm{wb})$ linked with				
	the coil varies with time t (sec) as $\phi = 50t^2 + 4$. The current in the coil at t = 2 sec is				
	a) 0.5 <i>A</i>	b) 0.1 <i>A</i>	c) 2 <i>A</i>	d) 1 <i>A</i>	
13.	3. A varying current at the rate of 3 <i>A</i> / <i>s</i> in a coil generates an e.m.f. of 8 <i>mV</i> in a nearby coil. The				
	mutual inductance of the two coils is				
	a) 2.66 <i>mH</i>	b) 2.66 × $10^{-3}mH$	c) 2.66 <i>H</i>	d) 0.266 <i>H</i>	
14.	4. The number of turns in primary and secondary coils of a transformer is 50 and 200				
	respectively. If the current in the secondary coil is 4A, then the current in the secondary coil is				
	a) 1A	b) 2 A	c) 4 A	d) 5 A	
15.	A circular coil of mean	radius of 7 cm and havin	ng 400 turns is rotated a	at the rate of 1800	
	revolutions per minute in the earth's magnetic field ($B = 0.5$ gauss), the maximum e.m.f.				
	induced in coil will be				
	a) 1.158 V	b) 0.58 V	c) 0.29 <i>V</i>	d) 5.8 <i>V</i>	
16.	16. Electric fields induced by changing magnetic fields are				
	a) Conservative				
	b) Non-conservative				
	c) May be conservative or non-conservative depending on the condition				
	d)Nothing can be said				
17.	7. In an induction coil with resistance, the induced emf will be maximum when				
	a) The switch is put on due to high resistance b) The switch is put off due to high resistance				
	c) The switch is put on due to low resistance d) The switch is put off due to low resistance			f due to low resistance	
18.	. The inductance of a solenoid 0.5 m long of cross-sectional area 20 cm^2 and with 500 turns is				
	a) 12.5 <i>mH</i>	b) 1.25 <i>mH</i>	c) 15.0 <i>mH</i>	d) 0.12 <i>mH</i>	
19.	A coil of resistance 10 Ω and an inductance 5 <i>H</i> is connected to a 100 <i>volt</i> battery. Then energy				
	stored in the coil is				
	a) 125 <i>er g</i>	b) 125 /	c) 250 <i>er.g</i>	d) 250 /	
20.	A small piece of metal	wire is dragged across th	he gap between the pole	es of a magnet in 0.4 s. If	
	change in magnetic flux in the wire is 8×10^{-4} Wb, then emf induced in the wire is				
	a) $8 \times 10^{-3} V$	b) 6×10^{-3} V	c) 4×10^{-3} V	d) 2×10^{-3} V	
	-	-	-	-	