

Subject : CHEMISTRY DPP No. : 9 Class: XIIth

Date:

Topic :- Electro Chemistry

1.	Total charge on 1 mole of a monovalent metal ion is equal to :							
	a) 6.28×10^{18} coulomb	b) 1.6×10^{-19} cou	ılomb	c) $9.65 \times 10^4 \text{ cou}$	lomb	d) None of		
thes	se							
2.	For which case Λ values	$vs\sqrt{c}$ show a straight	t line?					
	a) KCl	b) HCOOH		c) CH ₃ NH ₂		d) CH ₃ COOH		
3.	Which is not true for a standard hydrogen electrode?							
	a) The hydrogen ion concentration is $1M$							
	b) Temperature is 25°C							
	c) Pressure of hydrogen is 1 atmosphere							
	d) It contains a metallic co <mark>nduct</mark> or whi <mark>ch do</mark> es not adsorb hydrogen							
4.	The laws of electrolysis v	vere proposed by						
	a) Kohlrausch	b) Faraday		c) Haber		d) Bergius		
5.	The metal that cannot be obtained by electrolysis of the aqueous solution of its salts is :							
	a) Ag	b) Cr		c) Cu		d) Al		
6.	A certain current liberate					='		
libe	rated by the same current	-	e time i	n a copper sulphate	solutio	n?		
	a) 12.9 g	b) 15.9 g		c) 31.7 g		d) 36.9 g		
7.	If mercury is used as cath	node in the electroly	sis of a	queous NaCl solutio	n, the ic	ons discharged		
at c	athode are :							
	a) H ⁺	b) Na ⁺		c) OH ⁻		d) Cl ⁻		
8.	Specific conductivity of a solution							
	a) Increases with dilition			b) Decreases with dilution				
	c) Remains unchanged with dilution			d) Depends on mass of electrolyte				
9.	When an electrolytic solution conducts electricity, current is carried out by:							
	a) Electrons	b) Cations and ani	ons	c) Neutral atoms		d) None of		
thes								
10.	e.m.f. of a cell in terms of				de is :			
	·	b) $E = E_L - E_R$		c) $E = E_R - E_L$		$d) E = -[E_R$		
+ E								
11.	Which defines the standard reduction electrode potential of Zn ²⁺ ions?							
	a) $Zn^{2+}(aq) + 2e \rightarrow Zn(s)$; $[Zn^{2+}] = 1M$							
	b) $\operatorname{Zn}(g) \rightarrow \operatorname{Zn}^{2+} + 2e$;							
	c) $\operatorname{Zn}^{2+}(aq) \rightarrow \operatorname{Zn}(s) + 2\epsilon$	$[Zn^{2+}] = 1M$						

	d) $\operatorname{Zn}^{2+}(g) \longrightarrow \operatorname{Zn}(s) - 2e$;	$[7n^{2+}] - 1M$							
12	Given, the data at 25 °C								
	+ I ⁻ \rightarrow AgI + e ⁻ ; E° = 0.								
Ag -	$Ag^{+} + e^{-}; \qquad E^{\circ} = -$	U 0UUN U 0UUN							
	Ag $+$ e; $L = -$ It is the value of $\log K_{\rm sp}$ for L								
/ VV 11a	RT	ngi:							
(2.3	$03 \frac{RT}{F} = 0.059 V$								
	a) - 8.12	b) +8.612		c) -37.83	d) -16.13				
13.	The molar conductivity of	HCl, NaCl and CH_3C	COONa a	re 425, 188, 96 <i>S</i> cm ² mol [–]	⁻¹ at 298 K. The				
molar conductivity of CH_3COOH at the same temperature is S cm ² mol ⁻¹ .									
	a) 333	b) 451		c) 325	d) 550				
14.	In the electrolysis of CuCl ₂	solution using Cu	electrode	es the mass of cathode incr	eases by 3.18				
g. W	g. What happened at the other electrode?								
	a) 0.05 mole of Cu^{2+} ions passed into solution								
	b) 0.112 litre of Cl ₂ was liberated c) 0.56 litre O ₂ was liberated								
	d) 0.1 mole of Cu ²⁺ ions passed into the solution								
15.	When a quantity of electricity is passed through CuSO ₄ solution, 0.16 g of copper gets								
depo	osited. If the same quantity	of electricity is pas	sed thro	ugh acidulated water, ther	the volume of				
H ₂ li	berated at STP will be [Give	en , atomic weight (of $Cu = 6$	54]					
	a) 4.0 cm^3	b) 56 cm ³		c) 604 cm ³	d) 8.0 cm^3				
16.	Faraday's laws hold good a	at:			,				
	a) All pressures	b) Only at 298 K		c) In different solvents	d) All of these				
17.	The standard reduction po	<mark>tenti</mark> als at 25°C of	Li + Li,	$\mathrm{Ba^{2+} Ba,Na^{+} Na}$ and $\mathrm{Mg^{2+}}$	Mg are				
-3.05, -2.73 , -2.71 and -2.37 V respectively. Which is strongest reducing agent?									
	a) Li	b) Ba		c) Na	d) Mg				
18.	In which cell, electrical energy is converted into chemical energy?								
	a) Water voltameter	b) Silver voltamet	er	c) Coulometer	d) Either of				
thes	e								
19.	Passage of 96500 coulomb of electricity liberateslitre of O_2 at NTP during electrolysis.								
	a) 5.6	b) 6.5		c) 22.2	d) 11.2				
20.	The number of coulombs r	equired for the dep	position	of 107.870 g silver is					

a) 96500

b) 48250

c) 1

d) 10000