

Class : XIIth Date : Solutions

Subject : CHEMISTRY DPP No. : 9

Topic :- Electro Chemistry

1 (c)

1 mole of monovalent metal ion means charge of *N* electrons *i.e.*, 96500 C or 1 faraday.

2 (a)

For strong electrolytes $\Lambda vs \sqrt{c}$ plots are straight line.

3 **(d)**

The metal should be capable of adsorbing H (*e.g.*, Pt).

4 **(b)**

Laws of electrolysis were proposed by Michael Faraday in 1833.

1. **Faraday's first law** "The mass of any substance deposited or liberated at any electrode is directly proportional to the quantity of electricity passed".

i.e., $w \propto Q$

where, w = mass of ions liberated in gram

Q = quantity of electricity passed in coulombs.

2. **Faraday's second law** "When the same quantity of electricity is passed through different electrolytes, the masses of different ions liberated at the electrodes are directly proportional to their chemical equivalents."

i.e.,
$$\frac{w_1}{w_2} = \frac{E_1}{E_2} \text{ or } \frac{Z_1 i t}{Z_2 i t} = \frac{E_1}{E_2}$$
.

5

(d)

(b)

Strong electropositive metals (I group, II group and Al) cannot be obtained at cathode by electrolysing their aqueous salt solutions.

6

(b) $\frac{\text{Weight of Cu}}{\text{Weight of H}_2} = \frac{\text{Eq.wt.of Cu}}{\text{Eq.wt.of H}_2}$ $\frac{\text{Weight of Cu}}{0.504} = \frac{63.6/2}{1}$ ∴ Weight of Cu = 15.9 g

7

In presence of Hg electrode preferential discharge of Na^+ (in comparison to H^+) occurs.

8 **(b)**

Specific conductivity of a solution decreases with dilution.

9

(b)

Passage of current in electrolytic solution is due to migration of ions towards opposite electrodes.

10 (c) $E_{\text{cell}} = E_{OP_L} + E_{RP_R} = -E_{RP_L} + E_{RP_R}.$ (a) 11 $E^{\circ} = E$, when $[\operatorname{Zn}^{2+}] = 1M$; Also process is $\operatorname{Zn}^{2+}(aq) + 2e \longrightarrow \operatorname{Zn}(s)$. 12 (d) AgI (s) + $e^- \rightleftharpoons$ Ag (s) + I^- ; $E^\circ = 0.152$ V $Ag (s) \rightarrow Ag^{+} + e^{-} \qquad E^{\circ} = -0.8 V$ $AgI (s) \rightarrow Ag^{+} + I^{-} \qquad E^{\circ} = -0.952$ $E_{\text{cell}}^{\circ} = \frac{0.059}{n} \log K_{sp}$ $-0.952 = \frac{0.059}{1} \log K_{sp}$ $\log K_{sp} = \frac{-0.952}{0.059} = -16.135$ 13 (a) $\Lambda^{\infty}_{CH_{3}COOH} = \Lambda^{\infty}_{CH_{3}COONa} + \Lambda^{\infty}_{HCl} - \Lambda^{\infty}_{NaCl}$ 14 (a) At cathode : $Cu^{2+} + 2e \rightarrow Cu$; $Cu \rightarrow Cu^{2+} + 2e$ At anode : 15 (d) Wt.of Cu deposited eq.wt.of Cu $\frac{\text{Wt.of H}_2 \text{ produced}}{\text{Wt.of H}_2 \text{ produced}} = \frac{\text{eq.wt.of H}}{\text{eq.wt.of H}}$ $\frac{0.16}{\text{wt.of H}_2} = \frac{64/2}{1} = \frac{32}{1}$ Wt. of $H_2 = \frac{0.16}{32} = 5 \times 10^{-3} \,\mathrm{g}$ Volume of H₂ liberated at STP $=\frac{22400}{2} \times 5 \times 10^{-3}cc$ = 56 cc16 (a) Faraday's laws are independent of external factors. 17 (a) E_{OP}° for Li is more, $Li \rightarrow Li^+ + e$ Thus, Li is strong oxidant. 18 (d) All are electrolytic cells.

19 **(a)**

96500 C or 1F will liberate 1 eq. of O_2 or 1/4 mole O_2 or 5.6 litre O_2 at NTP.

20 **(a)**

96500C or 1 Faraday charge is required for the deposition of 1 g-equivalent of a substance.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	С	Α	D	В	D	В	В	В	B	С
Q.	11	12	13	14	15	16	17	18	19	20
А.	A	D	A	A	D	Α	A	D	A	A

