

Class : XIIth Date :

Subject : CHEMISTRY DPP No. : 8

Topic :- Electro Chemistry

	9. <i></i>							
1.	1. Hydrogen gas is not liberated when the following metal is added to dil. HCl							
	a) Ag	b) Zn	c) Mg	d) Sn				
2.	2. In Ahydrogen-oxygen fuel cell, combustion of hydrogen occurs to							
	a) Generate heat							
	b) Create potential difference between the two electrodes							
	c) Produce high purity water							
	d) Remove adsorbed oxygen from electrode surfaces.							
3.	The sum of the two transport number of ions for an electrolyte is always equal to :							
	a) 1	b) 2	c) 1/2	d) None of				
the								
4.	On passing 0.5 F electricity	<mark>/ thro</mark> ugh m <mark>olten s</mark> odium o	chloride, sodium deposited	at cathode will				
be								
_		b) 11.50 g	c) 58.50 g	d) 0.00 g				
5.								
сор	per deposited at the cathod							
	a) 2.096 g	b) 0.296 g	c) 3.029 g	d) 2.906 g				
6.		of molar conductivity at infinite dilution of LiCl, NaCl and KCl is						
	a) $LiCl > KCl > NaCl$	b) KCl > <i>NaCl</i> > <i>LiCl</i>	c) $LiCl > NaCl > KCl$	d) NaCl				
> KCl > LiCl								
	7. Salts of <i>A</i> (atomic weight 7), <i>B</i> (atomic weight 27) and <i>C</i> (atomic weight 48) were electrolyzed							
	under identical conditions using the same quantity of electricity. It was found that when 2.1 g of <i>A</i>							
was deposited, the weights of <i>B</i> and <i>C</i> deposited were 2.7 g and 7.2 g. The valencies of <i>A</i> , <i>B</i> and <i>C</i>								
are	respectively : a) 3,1 and 2	b) 1, 3 and 2	c) 3,1 and 3	d) 2,3 and 2				
8.	Indicator electrode is :	bj 1, 5 aliu 2	cj 5,1 and 5	uj 2,5 anu 2				
0.	a) SHE							
	b) Calomel electrode							
	c) Ag/AgCl electrode							
	d) Quinhydrone electrode							
9.	Molar conductance of electrolytic solution Λ_m is							
	a) $\propto l$	b) $\propto (1/A)$	c) $\propto (1/C)$	d) $\propto (\sqrt{C})$				
10.	Which metal is most readily			~) ·· (v·)				
	a) Copper	b) Iron	c) Silver	d) Nickel				
	·) rr		- , - · 	- ,				

11. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10mA current. The time required to liberate 0.01 mole of H_2 gas at the cathode is (1F = 96500 C mol⁻¹)

tim	e required to liberate 0.01 r	-0	ecatilot		,				
	a) 9.65 $\times 10^4 s$	b) 19.3 \times 10 ⁴ s		c) $28.95 \times 10^4 s$	d) 38.6 \times 10 ⁴				
			S						
	12. The oxidation potential of Mg and Al are $+$ 2.37 and $+$ 1.66 volt respectively. The Mg in								
che	mical reactions :								
	a) Will be replaced by Al								
	b) Will replace Al								
	c) Will not be able to replace Al								
10	d) None of the above								
13. The weight of silver (eq. wt. = 108) displaced by that quantity of current which displaced 5600									
mL	of hydrogen at STP is :	h) 100 -		a) Г 4 а	d) Nama af				
th a	a) 54 g	b) 108 g		c) 5.4 g	d) None of				
these									
14. When during electrolysis of a solution of a $AgNO_3$, 9650 C of charge pass through the									
electroplating bath, the mass of silver deposited on the cathode will be									
15	a) 1.08 g	b) 10.8 g	tradag /	c) 21.6 g	d) 108 g p^{2+} pb pb ²⁺ are				
15. The standard oxidation potentials of the electrodes Ag $ Ag^+, Sn Sn^{2+}, Ca Ca^{2+}, Pb Pb^{2+}$ are									
– 0.8, 0.136, 2.866 and 0.126 V respectively. The most powerful oxidising agent among these metal ions is :									
IOIIS	a) Pb^{2+}	b) Ca ²⁺		c) Sn ²⁺	d) Ag ⁺				
16	Pure water does not cond	,	ico it		u) Ag				
10.	a) Is neutral	uct electricity beca	usen	b) Is readily decompose	h				
	c) Is almost totally unioni	zed		d) Has a low boiling poi					
17.									
1/1	a) MgCl ₂	b) BeCl ₂	ou otace	c) CaCl ₂	d) SrCl ₂				
18	A cell necessarily does not contain :								
10.	a) An anode								
	b) A cathode								
	c) An electrolyte or a fuel								
	d) A porous diaphragm								
19. The standard redox potentials for the reactions									
$Mn^{2+} + 2e^- \rightarrow and Mn^{3+} + e^- \rightarrow M^{2+}$ are -1.18 V and 1.51 V respectively. What is the redox									
potenital for the reaction									
$Mn^{3+} + 3e^- \rightarrow Mn$?									
	a) 0.33 V	b) 1.69 V		c) -0.28 V	d) - 0.85				
20.	During electrolysis of fused CaH_2 , H_2 is liberated at :								
	a) Anode	b) Cathode		c) Either electrode	d) Not at all				