Class: XIIth
Date :

Topic:-Electro Chemistry

1
(b)

Electrode potential of cell must be positive for spontaneous reaction.

$$
\begin{aligned}
& \mathrm{Zn}^{2+} \rightarrow \mathrm{Zn} ; E^{\circ}=-0.76 V \\
& \mathrm{Cu}^{2+} \rightarrow \mathrm{Cu} ; E^{\circ}=-0.34 V
\end{aligned}
$$

Redox reaction is

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \\
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}
\end{array} \\
\begin{aligned}
\text { (oxidation) } \\
\text { (reduction) }
\end{aligned} \\
\hline E_{\text {cell }}= \\
\\
=E_{\text {cathode }}^{\circ}-\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}_{\text {anode }}^{\circ}+\mathrm{Cu} \\
\\
=-0.34-(-0.76) \\
\\
=+0.42 \mathrm{~V}
\end{array}
\end{aligned}
$$

$E_{\text {cell }}$ is positive , so above reaction is feasible.
(c)

Among given elements, D has the minimum reduction potential (-2.37 V) hence, it can displace all other from their salts.
3
(a)
$\mathrm{Cr} / \mathrm{Cr}^{3+}(0.1 \mathrm{M}) \| \mathrm{Fe}^{2+}(0.01 \mathrm{M}) \mid \mathrm{Fe}$
Oxidation half-cell; $\mathrm{Cr} \rightarrow \mathrm{Cr}^{3+}+3 \mathrm{e}^{-} \times 2$
Reduction half-cell; $\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe} \times 3$
Net cell reaction;

$$
\begin{aligned}
2 \mathrm{Cr} & +2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Fe} \quad(n=6) \\
E_{\text {cell }}^{\circ} & =E_{\text {oxidation }}^{\circ}-E_{\text {reduction }}^{\circ} \\
& =0.72-0.42 \\
& =0.30 \mathrm{~V}
\end{aligned}
$$

$$
E_{\text {cell }}^{\circ}=E_{\text {cell }}^{\circ}-\frac{0.0591}{n} \log \frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Fe}^{2+}\right]^{3}}
$$

$$
=0.30-\frac{0.0591}{6} \log \frac{(0.1)^{2}}{(0.01)^{3}}
$$

$$
=0.30-\frac{0.0591}{6} \log \frac{10^{-2}}{10^{-6}}
$$

$$
=0.30-\frac{0.0591}{6} \log 10^{4}
$$

$$
E_{\text {cell }}=0.2606 \mathrm{~V}
$$

(c)

A thin film of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is formed on Cr Surface.
(b)

The unit of electrochemical equivalent (Z) is g / C.

$$
\begin{aligned}
& w=\text { Z.i.t } \\
\therefore \quad & Z=\frac{w}{i . t} \mathrm{~g} / C
\end{aligned}
$$

(d)

The elements which are below H_{2} in electrochemical series, cannot displace H_{2}.
\because Out of $\mathrm{Li}^{+}, \mathrm{Sr}^{2+}, \mathrm{Al}^{3+}$ and $\mathrm{Ag}^{+}, \mathrm{Ag}^{+}$is below H_{2} in electrochemical series, so Ag^{+}cannot displace H_{2}.
(b)

As the reduction potential of Zn is less than that of Ag , hence Zn will act as anode when
Acell is made using them.
Hence, the correct reaction will be

$$
\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \text { (oxidation) }
$$

$\frac{2 \mathrm{Ag}^{+}(a q)+2 e^{-} \rightarrow 2 \mathrm{Ag}(s)}{\mathrm{Zn}(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{Ag}(s)}$
(a)
$W \propto i \times t$ and $W=Z \times i \times t$.
(b)

$$
\begin{aligned}
\text { Cell constant }=\frac{k}{\mathrm{C}} & =0.0212 \times 55 \\
& =1.166 \mathrm{~cm}^{-1}
\end{aligned}
$$

(c)

Reducing power, $i e$, the tendency to lose electrons increases as the reduction potential decreases
(a)

1. Reducing character $\propto \frac{1}{\text { reduction potentials }}$
2. Oxidizing power of halogen decreases from F_{2} to I_{2} because their reduction potentials decreases from fluorine to iodine.
3. The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide since, the stability of the $H-X$ bond decreases in the same order. Hence, all statements are correct.
(d)

If $E^{\circ}=0$, then $\Delta G^{\circ}=-n E^{\circ} F=0$.
(d)
$E_{\text {cell }}^{\circ}=E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}$
$\therefore \quad 2.46=(+0.80)-E_{\mathrm{Al}^{3+} / \mathrm{Al}}^{\circ}$
Or $E_{\mathrm{Al}^{3+} / \mathrm{Al}}^{\circ}=0.80-2.46=-1.66 \mathrm{~V}$
(d)
E° for reaction in (d) $=E_{O P_{\mathrm{Br}}}^{\circ}+E_{R P_{1}}^{\circ}=-1.09+(-0.54)$
$=-1.63 \mathrm{~V}$
Since, E° is negative and thus, reaction is non-spontaneous.
(b)
$\Delta G^{\circ}=-n F E^{\circ}$
$\Delta G^{\circ}=-2.303 R T \log K_{C}$
$\therefore n F E^{\circ}=2.303 R T \log K_{c}$
$\log K_{c}=\frac{n F E^{\circ}}{2.303 R T}$
$=\frac{2 \times 96500 \times 0.295}{2.303 \times 8.314 \times 298}$
$\log K_{c}=9.97$
$\therefore K_{c}=1 \times 10^{10}$
17 (c)
The molar conductivity of potassium hexacyanoferrate (II)
i.e., $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is highest because it gives maximum number of ions on ionization.
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(a)

The metals having higher negative value of standard reduction potential are placed above hydrogen in electrochemical series. The metals places above hydrogen has a great tendency to donate electrons or oxidising power. The metals having great oxidizing power are strongest reducing agent. Zn has higher negative value of standard reduction potential. Therefore, it is the strongest reducing agent.
(d)
$w=60 \mathrm{~g}$
$i=5 \mathrm{~A}$
Equivalent weight of $\mathrm{Ca}=\frac{\text { atomic weight }}{\text { valency }}$
$=\frac{40}{2}=20$
According to first law of Faraday electrolysis
$w=Z i t=\frac{\text { equivalent weight }}{96500} \times i \times t$
$\therefore 60=\frac{20}{96500} \times 5 \times t$
$t=\frac{96500 \times 60}{20 \times 5} \mathrm{~s}$
$=\frac{96500 \times 60}{20 \times 5 \times 60 \times 60} \mathrm{~h}$
$=16.08 \mathrm{~h}$

ANSWER-KEY											
Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	
A.	\mathbf{B}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{B}	\mathbf{D}	\mathbf{B}	\mathbf{A}	\mathbf{B}	\mathbf{C}	
Q.	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	
A.	A	D	D	D	C	B	C	A	A	D	

