

Class : XIIth Date :

Subject : CHEMISTRY DPP No. : 5

Topic :- Electro Chemistry

1	The standard e m f of a galvanic cell involving the cell reaction with $n = 2$ is found to be 0.295						
1. The standard e.m.i. of a garvanic centinvolving the centreaction with $n = 2$ is found to be 0.295. V at 25° C. The equilibrium constant of the reaction is :							
v ut	a) 2.0 $\times 10^{11}$	b) 4.0 $\times 10^{12}$	c) 1.0×10^2	d) 1.0 $\times 10^{10}$			
2	If an iron rod is dinned in	$CuSO_4$ solution, then :		uj 1.0 × 10			
2.	a) Blue colour of the solution turns red						
	a) Drawn lawar is deposited on iron red						
	c) No change occurs in the colour of the solution						
	d) None of the above						
3	Which of the following liberates hydrogen on reaction with dilute H-SO 2						
5.		b) Fo	c) (u)	d) Ha			
4	a) Al	b) re	C_{J} Cu P_{J} Cond $P' = 1.42 \text{ U}$ The W	uj ng			
4.	-) 2 ((M	$A = \pm 2.2$	D = -1.45 V. The Va	and of E_{cell} is			
-	a) 3.66 V	DJ U.80 V	CJ -0.80 V	a) -3.66 V			
5. A galvanic cell is composed of two hydrogen electrodes, one of which is a standard one. In							
WIII	ch of the following solution	s should the other electro	-) 0.1 M IL DO				
	a) 0.1 M HCI	D) 0.1 M CH ₃ COUH	сј 0.1 М Н ₃ РО ₄	a) 0.1 <i>M</i> H ₂ S			
~							
6. Which metal does not give the following reaction? M + water or steam \rightarrow oxide + H ₂ \uparrow							
	a) Iron	b) Sodium	c) Mercury	d) Magnesium			
7. 4.5 g of Al (at. mass 27 amu) is deposited at cathode from Al ³⁺ solution by a certain quantity of							
charge. The volume of H ₂ produced at STP from H ⁺ ions in solution by the same quantity of charge							
will be :							
	a) 11.2 L	b) 44.8 L	c) 5.6 L	d) 22.4 L			
8.	In the electrolysis of acidulated water, it is desired to obtain 1.12 cc of hydrogen per second						
under STP condition. The current to be passed is							
	a) 1.93 A	b) 9.65 A	c) 19.3 A	d) 0.965 A			
9.	The speed of ions during passage of current depends upon :						
	a) Nature of ion	b) Potential gradient	c) Dilution of solution	d) All of these			
10.). The best way to prevent rusting of iron is						
	a) Making it cathode		b) Putting in saline water				
	c) Both (a) and (b)		d) None of these				
111. The hydrogen electrode is dipped in a solution of $pH = 3$ at 25°C. The reduction potential of							
the	the cell would be :						

	a) 0.177 V	b) – 0.177 V	c) 0.087 V	d) 0.059 V				
12. Conductivity (unit Siemen) is directly proportional to area of the vessel and the concentration								
of the solution in it and is inversely proportional to the length of the vessel. Then, the units of the								
constant of proportionality is								
	a) S ² m ² mol	b) $S^2 m^2 mol^{-2}$	c) S m ² mol ^{-1}	d) S m mol $^{-1}$				
13.	The metal that cannot be produced on reduction of its oxide by aluminium is :							
	a) K	b) Mn	c) Cr	d) Fe				
14.	In the concentration cells, the electrical energy is produced due to :							
	a) Oxidation of fuel							
	b) Heat energy							
	c) Chemical reaction							
	d) Transfer of a substance from one concentration to other							
15.	5. How many faraday are needed to reduce a mole of MnO_4^- of Mn^{2+} ?							
	a) 4	b) 5	c) 3	d) 2				
16. For the cell,								
T1 T1 ⁺ (0.001 M) Cu ²⁺ (0.1 M) Cu								
E_{cell}	at 25°C is 0.83 V. E_{cell} can be	be increased						
	a) By decreasing [Cu ²⁺]		b) By increasing [Cu ²⁺]					
	c) By increasing [T1 ⁺]		d) None of these					
17.	7. In an aqueous solution, hy <mark>droge</mark> n (H ₂) will not reduce :							
	a) Fe ³⁺	b) Cu ²⁺	c) Zn ²⁺	d) Ag ⁺				
18.	18. How many faradays of electricity are required to electrolyse 1 mole $CuCl_2$ to copper metal and							
chlo	orine gas?							
	a) 1 F	<mark>b) 2 F</mark>	c) 3 F	d) 4 F				
19.	Which statement is not cor <mark>rect?</mark>							
	a) Conductance of an electrolytic solution increases with dilution							
	b) Conductance of an electrolytic solution decreases with dilution							
	c) Specific conductance of an electrolytic solution decreases with dilution							
	d) Equivalent conductance of an electrolytic solution increase with dilution							
20. The correct value of e.m.f. of cell is given by :								
i) $E_{cell} = E_{OP}$ anode $-E_{RP}$ cathode								
ii) $E_{\text{cell}} = E_{\text{OP}}$ anode + E_{RP} cathode								
iii) $E_{cell} = E_{RP}$ anode + E_{RP} cathode								
iv) $E_{cell} = E_{OP}$ anode $-E_{OP}$ cathode								
	a) (iii) and (i)	b) (i) and (ii)	c) (iii) and (iv)	d) (ii) and (iv)				