Class: XIIth
Solutions

Topic :- Electro Chemistry

1 (c)
The Gibb's free energy change ΔG and emf (E°) of a reversible electrochemical cell are related by the following expression.

$$
\begin{aligned}
\Delta G & =-n F E_{\text {cell }}^{\circ} \\
\text { or } & =-n F E
\end{aligned}
$$

2
 (b)

$E=E_{\mathrm{RP}}^{\circ}+\frac{0.0591}{n} \log \left[M^{+}\right]$
Given,

$$
\begin{aligned}
E_{\mathrm{RP}}^{\circ} & =-2.36 \mathrm{~V},\left[M^{+}\right]=0.1 \mathrm{M} \\
n & \left.=1 \text { (for } M^{+} \rightarrow M\right) \\
E & =E_{R P}^{\circ}+\frac{0.0591}{n} \log \left[M^{+}\right] \\
& =-2.36+\frac{0.0591}{1} \log 0.1 \\
& =-2.36+0.0591 \times(-1) \\
& =-2.36-0.0591 \\
& =-2.419 \mathrm{~V}
\end{aligned}
$$

$$
3 \quad \text { (d) }
$$

1 faraday deposits 1 g equivalent of any substance.
$64 \quad$ (b)
$\frac{1}{a}=k \times R=0.002765 \times 400$

$$
=1.106 \mathrm{~cm}^{-1}
$$

5
(d)

$$
E_{\text {Cell }}=E_{\text {cell }}^{\circ}+\frac{0.059}{2} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Zn}^{2+}\right]}
$$

$$
0.2905=E_{\text {cell }}^{\circ}+\frac{0.059}{2} \log \frac{0.01}{0.10}
$$

$\therefore \quad E_{\text {cell }}^{\circ}=0.32$
No, $E_{\text {cell }}^{\circ}=\frac{0.059}{2} \log _{10} \mathrm{~K}$
$\therefore \quad 0.32=\frac{0.059}{2} \log _{10} K$
$K=10^{0.32 / 0.0295}$
7 (a)
$\mathrm{Ni}^{-}+2 e^{-} \rightarrow \mathrm{Ni}$ (at cathode)

Equivalent weight of $\mathrm{Ni}=\frac{\text { mol.wt. }}{\text { gain electron }}$
$=\frac{58.7}{2}$
$=29.35$
$i=12 \mathrm{~A}, t=1 \mathrm{~h}=60 \times 60 \mathrm{~s}$,
$Z=\frac{\mathrm{eq} \cdot \mathrm{wt} .}{96500}$
Weight of deposit $\mathrm{Ni}=\frac{\text { Zit } \times \text { efficiency }}{100}$
$=\frac{29.35 \times 12 \times 60 \times 60 \times 60}{96500 \times 100}$
$=7.883 \mathrm{~g}$
$68 \quad$ (a)
$\frac{W}{E}=\frac{i \times t}{96500}$
$\therefore \frac{W}{E}=10^{-2}$ (Ag is monovalent)
$\therefore Q=i \times t=96500 \times 10^{-2}=965 \mathrm{C}$
69
(a)

The tendency to gain electron is in the order $z>y>x$
Thus, $y+e^{-} \rightarrow y^{-}$
$x \rightarrow x^{-}+e^{-}$
10 (d)
$\mathrm{NaCl}, \mathrm{KNO}_{3}, \mathrm{HCl}$ are strong electrolytes but the size of H^{+}is smallest. Smaller the size of the ions, greater is the conductance and hence greater is the conductivity
($\kappa=C \times$ cell constant) .
11
(a)

Given, $i=2.5 A$
$t=6 \min 26 s=6 \times 60+26=386 s$
Number of coulomb passed $=i \times t$

$$
\begin{gathered}
=2.5 \times 386 \\
=965 \mathrm{C} \\
\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu}
\end{gathered}
$$

$\therefore 2 \times 96500 \mathrm{C}$ charge deposits $\mathrm{Cu}=63.5 \mathrm{~g}$
$\therefore 965 \mathrm{C}$ charge deposits

$$
\begin{aligned}
\mathrm{Cu} & =\frac{63.5}{2 \times 96500} \times 965 \\
& =0.3175 \mathrm{~g}
\end{aligned}
$$

12
(c)

Metal placed above in electrochemical series replaces the other from its salt solutions.
73
(c)

$$
E_{\mathrm{cell}}=E_{O P_{\mathrm{Zn}}}^{\circ}+E_{R P_{\mathrm{Cu}}}^{\circ}+\frac{0.059}{2} \log \frac{\left[\mathrm{Cu}^{2+}\right]}{\left[\mathrm{Zn}^{2+}\right]}
$$

$\therefore \quad 1.1=0.78+E_{R P_{\text {cu }}}^{\circ}+\frac{0.059}{2} 1$
$\therefore \quad E_{R P_{\mathrm{Cu}^{2}+\mathrm{Cu}}^{\circ}}^{\circ}=0.32$
$\therefore \quad E_{R P_{\mathrm{Cu}^{2+} / \mathrm{cu}}^{\circ}}^{\circ}=-0.32 \mathrm{~V}$

14 (d)

More the reduction potential, more is the power to get itself reduced or lesser is reducing power or greater is oxidizing power
15 (a)
Quantity of current is charge, i.e., coulomb or ampere sec.
16
(d)

Cobalt is anode, ie, oxidation takes place on cobalt electrode ie, cell reaction is
$\mathrm{Co}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Co}^{2+}+2 \mathrm{Ag}$
$E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{R T}{n F} \ln \frac{\left[\mathrm{Co}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
Thus, less is the factor $\frac{\left[\mathrm{co}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]}$, greater is the $E_{\text {cell }}^{\circ}$

17
 (c)

Electrolysis of water takes place as follows
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\text { Cathode }}{\mathrm{H}^{+}}+\underset{\text { anode }}{ }$
At anod

$$
\begin{aligned}
\mathrm{OH}^{-} & \xrightarrow{\text { oxidation }} \mathrm{OH}+\mathrm{e}^{-} \\
& 4 \mathrm{OH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
\end{aligned}
$$

At cathode

$$
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \xrightarrow{\text { Reduction }} \mathrm{H}_{2}
$$

Given, time, $t=1930 s$
Number of moles of hydrogen collected

$$
\begin{aligned}
& =\frac{1120 \times 10^{-3}}{22.4} \text { moles } \\
& =0.05 \mathrm{moles}
\end{aligned}
$$

$\because 1$ mole of hydrogen is deposited by $=2$ moles of electrons
$\because 0.05$ moles of hydrogen will be deposited by

$$
\begin{aligned}
& =2 \times 0.05 \\
& =0.10 \text { mole of electrons }
\end{aligned}
$$

Charge, $Q=n F$

$$
=0.1 \times 96500
$$

Charge, $Q=$ it

$$
\begin{aligned}
0.1 \times 96500 & =i \times 1930 \\
i & =\frac{0.1 \times 96500}{1930}
\end{aligned}
$$

$$
=5.0 \mathrm{~A}
$$

18
(d)

1. $\Delta G^{\circ}=-n F E_{\text {cell }}^{\circ}$
2. $\quad E_{\text {cell }}^{\circ}=\frac{2.303 R T}{n F} \log K_{c}$
3. $k=A e^{-E_{a} / R T}$

19 (b)

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}
$$

Reduction of 1 mol of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to Cr^{3+} required 6 moles of electrons. Hence, charge required $=2 \times$ 96500 C
(b)

Cell constant $=\frac{1}{a}=\frac{\text { length }}{\text { area }}$
\therefore unit is cm^{-1}.

| ANSWER-KEY | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | \mathbf{C} | \mathbf{B} | \mathbf{D} | \mathbf{B} | \mathbf{D} | \mathbf{D} | \mathbf{A} | \mathbf{A} | A | D |
| | | | | | | | | | | |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | A | \mathbf{C} | \mathbf{C} | D | A | D | C | D | B | B |
| | | | | | | | | | | |

