

 $\therefore pH = 3$

(a)

(b)

(d)

(a)

(a)

8

 $E_{Cr^{3+}/Cr^{2+}}^{\circ} = -0.41 V$ $E_{Mn^{3+}/Mn^{2+}}^{\circ} = +1.57 V$ $E_{Fe^{3+}/Fe^{2+}}^{\circ} = +0.77 V$ $E_{Co^{3+}/Co^{2+}}^{\circ} = +1.97 V$

More negative value of E_{red}° indicates better reducing agent thus easily oxidized. Thus, oxidation of Cr^{2+} to Cr^{3+} is the easiest.

9

In other cells, two liquid are not present.

10

$$AgNO_3 \xrightarrow{\Delta} Ag_2O \xrightarrow{\Delta} Ag + O_2$$

11

Cu²⁺ + 2e⁻ → Cu, E[°] = 0.34Zn²⁺ + 2e⁻ → Zn, E[°] = 0.76 In the cell, Cu | Cu²⁺ || Zn²⁺ | Zn anode cathode In the cell,

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}}$$
$$= 0.76 - (-0.34)$$
$$= 1.10 \text{ V}$$

Here Fe acts as anode while Sn act as cathode. We know that,

$$E_{cell}^{\circ} = E_{cathode}^{\circ} - E_{anode}^{\circ}$$

= (-0.14) - (-0.44)
= - 0.14 + 0.44
= 0.30 V

14 **(d)**

 $Ag^+ + e^- \rightarrow Ag$

- \therefore 96500 C are required to deposite Ag = 108 g
- ∴ 965 C are required to deposite Ag

$$= \frac{108}{96500} \times 965 = 1.08 \,\mathrm{g}$$

(a)

 $\Lambda_{\rm m} = \Lambda_{eq}$. × valency factor;

For NaCl, valency factor = 1;

Molecular conductivity Λ_m is defined as the conductance of all the ions present in a solution containing 1g molecule in it; Λ_{eq} is defined as the conductance of all the ions present in a solution containing 1g equivalent in it.

16 **(a)**

In electrochemical series, iron is placed below sodium, so it cannot displace sodium from

its salt solution. Hence, no reaction takes place. Fe $\ + \ Na_3PO_4 \rightarrow No \ reaction$

17 **(d)**

During electrolysis of NaCl(aq), H⁺ ions are discharged at cathode and the pH of solution increases due to decrease in[H⁺].

18 **(d)**

Galvanic cell is

 $Cu(s) | Cu^{2+}(aq) || Hg^{2+}(aq) | Hg(l)$

In the above cell, oxidation of copper and reduction of mercury takes place. Its cell reaction is written as

$$Cu(s) + Hg^{2+}(aq) \rightarrow Cu^{2+}(aq) + Hg(l)$$

(a)

$$W = \frac{E. i. t}{96500} = \frac{1 \times 0.4 \times 30 \times 60}{96500}$$

$$= 7.46 \times 10^{-3} \text{ g and volume} = \frac{7.46 \times 10^{3} \times 22.4}{2}$$

$$= 0.0836 \text{ litre}$$

20

(c)

$$E_{cell}^{\circ} = \frac{2.303RT}{nF} \log K_{eq}$$

$$E_{cell}^{\circ} = \frac{0.0591}{n} \log K_{eq} \quad [At 298 K]$$

$$0.591 = \frac{0.0591}{1} \log K_{eq}$$

$$\therefore \log K_{eq} = 10$$

$$\therefore K_{eq} = 1 \times 10^{10}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	С	D	С	A	В	С	Α	В	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	Α	Α	Α	D	A	Α	D	D	A	С